OXIESEC PANEL
- Current Dir:
/
/
var
/
www
/
breader
/
inc
/
simplepie
/
library
/
SimplePie
/
Cache
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
📁
..
-
07/27/2024 04:04:53 PM
rwxrwxrwx
📄
00075c93132acf7a6e46e48d2291ce41.spc
5.69 KB
08/08/2022 06:41:41 AM
rwxrwxrwx
📄
0102169e52b6a27a410e7b237202fe84.spc
140.81 KB
06/20/2024 08:52:22 AM
rwxrwxrwx
📄
027d4dde1e82475da3d9afe4844afb1d.spc
2.63 KB
08/04/2022 02:47:12 PM
rwxrwxrwx
📄
03036edfece701eaa1537fea4014dd44.spc
56.35 KB
08/28/2024 10:14:14 AM
rwxrwxrwx
📄
0446f65691fba260d3eabbd1377240f8.spc
5.75 KB
08/03/2021 02:55:43 AM
rwxrwxrwx
📄
04d0c6cc2bf146b1318b78f84416b912.spc
124.45 KB
06/20/2024 08:52:14 AM
rwxrwxrwx
📄
0582678c8cfff117f770f9368b70c2b5.spc
19.33 KB
10/06/2021 12:58:29 AM
rwxrwxrwx
📄
0601d608f5e2ea8e198130b17fe6ef01.spc
157 bytes
04/20/2023 03:33:59 PM
rwxrwxrwx
📄
061ad7f2b0116c570fdc35c36824c7c6.spc
42.24 KB
05/14/2024 04:53:51 AM
rwxrwxrwx
📄
06e0c598a46c483b6b9d775e1ba1ecd4.spc
124.09 KB
07/03/2024 11:17:48 AM
rwxrwxrwx
📄
0802b12194f292de0e9d9617ac014785.spc
290.02 KB
07/09/2022 04:43:03 PM
rwxrwxrwx
📄
083aed319a0b5c8691e31d9150d8005e.spc
19.84 KB
04/02/2024 02:41:54 AM
rwxrwxrwx
📄
0a3bf48c84477cd58dbc2036a0331134.spc
70.63 KB
03/03/2023 03:29:10 AM
rwxrwxrwx
📄
0b5e5f226006af7e46d02ba8ce216a45.spc
54.71 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
0b73d04c6bba0acaf2f9a569f388313a.spc
33.59 KB
07/12/2023 02:13:33 PM
rwxrwxrwx
📄
0b8a46fca237497cfc90498f9eb909ab.spc
686.66 KB
02/14/2024 01:18:37 AM
rwxrwxrwx
📄
0ce2bdd7061489c6136e7614d421b874.spc
47.7 KB
03/23/2023 06:13:09 AM
rwxrwxrwx
📄
0de8a2204854bb5dd311607494c671e4.spc
828.58 KB
04/27/2022 03:38:58 AM
rwxrwxrwx
📄
0e15494dca4aeb24ea769582482c5162.spc
150.58 KB
04/20/2023 03:33:43 PM
rwxrwxrwx
📄
0eaec40cfb584fcb55fcdfb5d76684b9.spc
16.95 KB
03/30/2023 03:18:33 AM
rwxrwxrwx
📄
0ed254d4d9db6e3afe193b00bc6471bb.spc
89.85 KB
05/21/2024 04:51:10 AM
rwxrwxrwx
📄
0f079d9bb09fef940c38ee73b52b91d4.spc
34.42 KB
10/05/2021 09:26:01 AM
rwxrwxrwx
📄
0f5e21d9d8354d10ea23d99101259ba2.spc
42.06 KB
07/17/2024 02:56:55 AM
rwxrwxrwx
📄
0ffc1fa29a6bad7fb49e55940c374610.spc
75.61 KB
05/23/2024 12:21:08 PM
rwxrwxrwx
📄
1071b4a15b6c2fe6f7a96f194d0ba524.spc
196 bytes
08/28/2024 10:14:23 AM
rwxrwxrwx
📄
10ae571a6266a8e21b0fbb15f552a1cb.spc
13.15 KB
07/17/2024 02:56:58 AM
rwxrwxrwx
📄
118c129ff99a905e4e9325e388b841fe.spc
45.34 KB
10/06/2021 01:12:01 AM
rwxrwxrwx
📄
131a4ad07dda46888cbbc1cb4c710a91.spc
59.6 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
132dee0a955be7733cc009e546de18da.spc
100.76 KB
10/06/2021 12:25:04 AM
rwxrwxrwx
📄
142d8795402a4e8a520be8ebea6f54f3.spc
22.7 KB
06/20/2024 08:52:34 AM
rwxrwxrwx
📄
1469d584e9747d132077c9df3cda6c97.spc
121.15 KB
07/17/2024 02:56:55 AM
rwxrwxrwx
📄
1479626ef8ef423638ca62f43b3e0f8d.spc
95.45 KB
06/20/2024 08:52:43 AM
rwxrwxrwx
📄
16e016e3ca27d793aa9172c1913c3f23.spc
26.74 KB
10/13/2021 06:46:54 AM
rwxrwxrwx
📄
19f3a21c36072f501f634db8e658bc9f.spc
16.6 KB
05/02/2024 07:13:38 AM
rwxrwxrwx
📄
1b8954ae7aab6fd9784cbcc827133f80.spc
186 bytes
08/12/2021 10:27:02 AM
rwxrwxrwx
📄
1c0bbac8beea30e555f26fd02994e7a5.spc
19.96 KB
04/02/2024 02:41:54 AM
rwxrwxrwx
📄
1c1a63fc25720b7c22c9c28fa2aa9379.spc
236.54 KB
08/12/2021 10:27:08 AM
rwxrwxrwx
📄
1f1672e0ecc5e7a6d278c930015520ab.spc
166 bytes
03/23/2023 06:13:09 AM
rwxrwxrwx
📄
1f4cf3ae9ba91935f556711c1cfc34d4.spc
88.33 KB
06/20/2024 08:52:38 AM
rwxrwxrwx
📄
1f5e96e3f1a01f95ab611ec1458fe470.spc
169.16 KB
07/17/2024 02:57:03 AM
rwxrwxrwx
📄
20a75b688975a2d5d342eae9f4c33411.spc
1.22 MB
04/27/2022 03:32:10 AM
rwxrwxrwx
📄
225d97aca36305a8b407ea6d8d5b187e.spc
55.08 KB
06/20/2024 08:52:44 AM
rwxrwxrwx
📄
242d3dabf79d13154fcc384ff8b2d25e.spc
113.19 KB
07/17/2024 02:56:54 AM
rwxrwxrwx
📄
25512b0d18ae6e4d20d027abbc467365.spc
31.2 KB
06/19/2021 12:29:12 PM
rwxrwxrwx
📄
25948504a82cd8da1985fddd4500c1c7.spc
153.7 KB
04/27/2022 03:38:55 AM
rwxrwxrwx
📄
26e0c631724f3653c10c3123546ab5e2.spc
110.09 KB
02/21/2022 03:01:10 PM
rwxrwxrwx
📄
2704664dff0e40e19de087fe00892bc2.spc
24.51 KB
08/12/2021 10:27:02 AM
rwxrwxrwx
📄
274ae07ff50cfde2bda57a71703b62f4.spc
2.54 KB
05/04/2024 06:41:03 AM
rwxrwxrwx
📄
2799184659106c88b5072a3e3f763a4d.spc
2.54 KB
03/12/2024 05:50:14 AM
rwxrwxrwx
📄
2801f3bdd649962fa663f608c2383280.spc
154.53 KB
11/05/2021 11:40:13 AM
rwxrwxrwx
📄
28099e26c5c9a06acb85a41ccd789efc.spc
500.36 KB
07/03/2024 11:17:48 AM
rwxrwxrwx
📄
2aabe0323264e3f60916621039be0e76.spc
42.37 KB
02/18/2022 06:14:46 AM
rwxrwxrwx
📄
2abcd685295b4a261ad2e866188e5e11.spc
125.3 KB
06/20/2024 08:52:21 AM
rwxrwxrwx
📄
2aed529f6407470bef913050a1d118ef.spc
151 bytes
01/05/2023 02:13:14 PM
rwxrwxrwx
📄
2b2654a64e8b0f5d9cf497e0883b2042.spc
96.1 KB
03/28/2023 10:36:23 AM
rwxrwxrwx
📄
2dae1abba28ecd05f3e1e91f308cf8c4.spc
87.25 KB
11/05/2021 11:40:07 AM
rwxrwxrwx
📄
2db16a36af8daf383cb739dd57a44d90.spc
147.19 KB
07/17/2024 02:57:01 AM
rwxrwxrwx
📄
2de250597c053bd81359233c14c51db4.spc
286.38 KB
06/06/2021 03:15:58 PM
rwxrwxrwx
📄
2fb670ecdcda7db936aa7d2f018a79e4.spc
23.75 KB
06/20/2024 08:52:22 AM
rwxrwxrwx
📄
30d5af6cd4c10ea02520bcaba31f3d1c.spc
141.02 KB
07/26/2024 07:37:50 AM
rwxrwxrwx
📄
31591159e55bceb27be71ce43cd1517e.spc
443.64 KB
03/16/2022 05:35:22 PM
rwxrwxrwx
📄
31f817c15425941589a9819216265501.spc
68.33 KB
08/28/2024 10:14:14 AM
rwxrwxrwx
📄
34661b0e5b23f423b303c946172b39f8.spc
20.99 KB
08/28/2024 10:14:17 AM
rwxrwxrwx
📄
3567037b5acd1842946ba40397edead4.spc
84.5 KB
06/20/2024 08:52:39 AM
rwxrwxrwx
📄
37cf2adae9335c54f1dbc436922e6cfc.spc
181 bytes
05/21/2024 04:14:40 PM
rwxrwxrwx
📄
389ae768f4ecb350b56b92da3b04c1ac.spc
180.5 KB
08/28/2024 10:14:21 AM
rwxrwxrwx
📄
3bcfb7838de30c68c7acc437c16935cc.spc
142.35 KB
09/23/2022 10:34:29 AM
rwxrwxrwx
📄
3ca755a78dd04c91695e5fcee845991f.spc
42.02 KB
04/05/2023 07:09:34 AM
rwxrwxrwx
📄
3d135369c757ae57c3c873e6070d5ac6.spc
46.18 KB
09/09/2024 03:09:14 PM
rwxrwxrwx
📄
3e4e8d898fc42bca52bf888c3a33ef23.spc
614.85 KB
08/13/2024 02:27:32 PM
rw-r--r--
📄
3e804b49f84699d48348b3bee312090d.spc
25.24 KB
03/23/2023 06:57:07 AM
rwxrwxrwx
📄
3f92b590befbddc6f7237f2ff7a2ca21.spc
407.55 KB
08/01/2023 07:53:29 AM
rwxrwxrwx
📄
3f93802ae5a285cffaf04f22ceb596fb.spc
307.02 KB
08/03/2021 02:55:41 AM
rwxrwxrwx
📄
419e5468f73de12da7ac55b064ff6e04.spc
19.87 KB
04/17/2023 02:08:43 PM
rwxrwxrwx
📄
43cdef0c688f38c395285fd09bd1d8b6.spc
163 bytes
11/21/2023 07:57:07 AM
rwxrwxrwx
📄
445a8424173fb9de0f08493a09557c92.spc
39.14 KB
05/23/2024 12:21:14 PM
rwxrwxrwx
📄
447b88825763019604aca4e363415120.spc
3.18 KB
10/05/2021 09:26:02 AM
rwxrwxrwx
📄
44a6e222af7ac1e000190688f3824d27.spc
103.66 KB
08/24/2022 06:38:59 AM
rwxrwxrwx
📄
45ec354e05ea3a553e89c9f9d1ee7a6f.spc
67.86 KB
08/28/2024 10:14:14 AM
rwxrwxrwx
📄
48926180fcc9ab4ab897cfbc5279409e.spc
170 bytes
07/11/2024 09:08:36 AM
rwxrwxrwx
📄
4904c558085c30a9ca52969c7f875cf8.spc
155 bytes
06/18/2024 08:58:50 AM
rwxrwxrwx
📄
490fd4abfc32189cff5d5f38ddaaff5b.spc
22.31 KB
11/05/2021 11:40:08 AM
rwxrwxrwx
📄
491e4a0adc576f7c32fdb7ee38bb0997.spc
88.77 KB
08/04/2022 02:46:49 PM
rwxrwxrwx
📄
492e918dde587df3095914b1f67cd6ee.spc
31.56 KB
04/20/2023 03:34:22 PM
rwxrwxrwx
📄
4b6d0ec22ab2dc33cffefef17cf9a288.spc
87.42 KB
06/20/2024 08:52:31 AM
rwxrwxrwx
📄
4b6fa8105439c52ea4f2c1f18e0957e2.spc
181 bytes
06/18/2024 08:58:27 AM
rwxrwxrwx
📄
4c3facd12e8f40cab8114677f681ebaf.spc
134 bytes
04/20/2023 03:34:27 PM
rwxrwxrwx
📄
4ca537d8aa4727a23841361c475118e1.spc
42.22 KB
06/20/2024 08:52:23 AM
rwxrwxrwx
📄
4d1bb795413f82f68c666caa0c0c27bb.spc
148.14 KB
08/31/2023 01:16:08 AM
rwxrwxrwx
📄
4e8baeaef3679f9460ffdecddbb1f6a7.spc
35.08 KB
05/02/2024 07:13:41 AM
rwxrwxrwx
📄
5064bfc366d30fb3250bafeacadc83db.spc
22.11 KB
08/13/2024 02:27:36 PM
rw-r--r--
📄
50ba71d2f35fb5e96b224d907d33d263.spc
720.35 KB
02/26/2023 07:17:42 AM
rwxrwxrwx
📄
51447ae67b6d856982df0ea0496cf24b.spc
18.89 KB
09/03/2024 09:10:45 AM
rwxrwxrwx
📄
522fe4b133aa24cb42c79b24ecb5c838.spc
134.37 KB
12/06/2023 04:54:15 AM
rwxrwxrwx
📄
5432740bf8126b80fd18515165c5cf20.spc
22.07 KB
04/17/2023 02:08:44 PM
rwxrwxrwx
📄
55fad6ae8bfedfb81fafc8bd5112a79f.spc
31.16 KB
07/06/2021 11:10:27 AM
rwxrwxrwx
📄
577d0589862161e3aaa25ed8758b2765.spc
29.23 KB
08/28/2024 10:14:20 AM
rwxrwxrwx
📄
57e4b3f5cadf2d33fa630cb96499349a.spc
154 bytes
07/02/2021 12:21:39 PM
rwxrwxrwx
📄
588359e68ff59d4ef53aaf3edb6a44cf.spc
6.77 KB
07/26/2024 07:16:40 AM
rwxrwxrwx
📄
5a06bba505584742f9e590f2f81e0ff3.spc
128 bytes
10/14/2021 10:14:57 AM
rwxrwxrwx
📄
5c6d487a1fbb288f7f0f73b55f6b2df1.spc
41.86 KB
07/26/2024 06:33:59 AM
rwxrwxrwx
📄
5c744a4198beb7326dcf101f961486b4.spc
56.94 KB
07/17/2024 02:56:53 AM
rwxrwxrwx
📄
5ef8b2cef4776b3e3f9f79092ce932ca.spc
124.66 KB
06/20/2024 08:52:18 AM
rwxrwxrwx
📄
5fc9bcdda34ec7e72510b177a0164b7b.spc
602.71 KB
07/17/2024 02:56:54 AM
rwxrwxrwx
📄
60bc545cda9dafe75484b88be1dd4ae9.spc
67.49 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
60fe2edd86b212feb0f71552066ef55d.spc
186.19 KB
08/28/2024 10:14:21 AM
rwxrwxrwx
📄
6270f865db79068a5dedb78ba877e7a0.spc
100.02 KB
05/29/2024 06:44:42 AM
rwxrwxrwx
📄
6370a4a7eb9be29e32a96811bc0dd7b6.spc
19.59 KB
04/02/2024 02:41:54 AM
rwxrwxrwx
📄
63f55618eba7b0585577fb08ea8818dc.spc
41.42 KB
07/26/2024 06:33:59 AM
rwxrwxrwx
📄
651d4f6bf953adef7c5b8f05f01e1151.spc
32.47 KB
04/20/2023 03:34:01 PM
rwxrwxrwx
📄
66267a4d6dba7887fc7d4a1aa2da9b75.spc
123.73 KB
06/20/2024 08:52:15 AM
rwxrwxrwx
📄
663e01e065755a523f15f61782ef2fd0.spc
28.3 KB
08/28/2024 10:14:23 AM
rwxrwxrwx
📄
66506bf5272cefcb56085b4b77463bd8.spc
280.88 KB
07/03/2024 11:17:51 AM
rwxrwxrwx
📄
669fa07a0da20a5d0da35d972d5fcac5.spc
99.77 KB
04/20/2023 03:33:37 PM
rwxrwxrwx
📄
679d4423c6016aeb24557d767a509bbb.spc
46.29 KB
08/12/2021 10:27:00 AM
rwxrwxrwx
📄
68b07b9d8602e8295a1069c1af39ca9b.spc
18.57 KB
09/23/2023 02:54:32 AM
rwxrwxrwx
📄
69185497e5f13fd4744a2c39d76fb812.spc
32.55 KB
08/28/2024 10:14:13 AM
rwxrwxrwx
📄
69b3abe3aa88d144d3591d56873de72b.spc
150 bytes
12/06/2021 01:33:37 PM
rwxrwxrwx
📄
6a0ab3ec7216c8caa50e266f3ff16993.spc
22.35 KB
04/17/2023 02:08:43 PM
rwxrwxrwx
📄
6c7544e2246a222bbde6ad7d0406c8db.spc
200.49 KB
05/23/2024 12:21:11 PM
rwxrwxrwx
📄
6c7c31384f1626a700bc8fbd2f584add.spc
57.94 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
6cf9d92f08956fa74016014a99dc793e.spc
28.51 KB
02/21/2022 02:59:01 PM
rwxrwxrwx
📄
6ee565104f90a8212dd7e14133d6e4ae.spc
193 bytes
10/06/2021 12:58:29 AM
rwxrwxrwx
📄
6eede30400457c4277e91f133b7a27a6.spc
60.73 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
71f0008f42879a3e550851568b3494d0.spc
1.8 MB
06/20/2024 08:52:29 AM
rwxrwxrwx
📄
72ff111641b87f5d234c3ded91959234.spc
136.69 KB
08/04/2022 02:46:41 PM
rwxrwxrwx
📄
7400954e05f62bf45dcf5c1087223df4.spc
2.63 KB
07/17/2024 02:57:05 AM
rwxrwxrwx
📄
7463e454c4ab831179d37c4e86643dc2.spc
266.75 KB
06/20/2024 08:52:31 AM
rwxrwxrwx
📄
74a014a9f44690e4a045b1753c1ef5c9.spc
159 bytes
10/06/2021 01:11:59 AM
rwxrwxrwx
📄
76c5af11f8b8bd34c58097da8689d2a2.spc
185.34 KB
04/02/2024 02:41:53 AM
rwxrwxrwx
📄
76e6555adc909bfac627ceaba91df128.spc
167.17 KB
07/17/2024 02:57:07 AM
rwxrwxrwx
📄
78ea3147f80e467c8740931f2f934bee.spc
163 bytes
12/04/2023 08:39:52 AM
rwxrwxrwx
📄
7ab2d04babf16e9d06f787e38f186748.spc
89.36 KB
08/28/2024 10:14:15 AM
rwxrwxrwx
📄
7b9723cc6339397505e29dbe8497b10a.spc
150 bytes
06/18/2024 08:59:05 AM
rwxrwxrwx
📄
7beeb799568e0584e407e788f7ec973d.spc
56.61 KB
01/27/2024 03:55:42 AM
rwxrwxrwx
📄
7c6fcaa553a1353d8fcc5535064f4008.spc
50.63 KB
04/20/2023 03:33:07 PM
rwxrwxrwx
📄
7d1ab5c52f2c3ab33c409e73bedecc5e.spc
3.92 KB
07/26/2024 07:37:45 AM
rwxrwxrwx
📄
7dc75885832733a5ea185d98887b82df.spc
33.47 KB
04/20/2023 03:34:27 PM
rwxrwxrwx
📄
7e7185a8ee7828937f2a05f0aa956f10.spc
162 bytes
04/20/2023 03:34:11 PM
rwxrwxrwx
📄
80d5eace46cca553f0c7e7a631ed6703.spc
123.39 KB
06/20/2024 08:52:20 AM
rwxrwxrwx
📄
828f89042b67ae6fca8657110997c302.spc
3.94 KB
07/17/2024 02:56:55 AM
rwxrwxrwx
📄
8341235cab83dcb126f0ad2b5812b63d.spc
88.67 KB
08/13/2024 02:27:37 PM
rw-r--r--
📄
8353d08af859970965abdbc71f5bf9a3.spc
37.15 KB
06/21/2022 09:28:32 AM
rwxrwxrwx
📄
83efe9d0463ea50fa82517c4a92ed589.spc
158 bytes
04/20/2023 03:33:39 PM
rwxrwxrwx
📄
8409cc881139fa5d466af5d757f19609.spc
48.09 KB
08/28/2024 10:14:28 AM
rwxrwxrwx
📄
84ed1e5a5cc7fb7930a3132f1dd7ae0a.spc
112.98 KB
03/03/2023 01:22:51 PM
rwxrwxrwx
📄
850a6a7f962502618892db457e231fe7.spc
131.61 KB
09/30/2021 05:18:11 AM
rwxrwxrwx
📄
852c8f9b4effcea04904f4e1e55da3f4.spc
459.08 KB
04/20/2023 03:33:29 PM
rwxrwxrwx
📄
874091b93fb13db66a5fdbe72fbb8d6b.spc
1.59 KB
06/19/2021 12:29:13 PM
rwxrwxrwx
📄
8b768f4e406ced9a4cba62897a7bc651.spc
97.91 KB
08/28/2024 10:14:27 AM
rwxrwxrwx
📄
8bbfe139e67e5f738b9ffcb18a7c5b86.spc
47.7 KB
10/18/2024 08:45:16 AM
rwxrwxrwx
📄
8d0823d0a4bd13241dc275b14e801667.spc
183.86 KB
08/01/2023 07:53:28 AM
rwxrwxrwx
📄
8d3db038a087fbdc54054a9282afa2c6.spc
164 bytes
04/20/2023 03:34:22 PM
rwxrwxrwx
📄
8d64115de2ca5294e771c8614663c953.spc
162 bytes
08/04/2022 02:46:49 PM
rwxrwxrwx
📄
8e24588eb23460ceefe5195686c2a6db.spc
101.38 KB
06/20/2024 08:52:31 AM
rwxrwxrwx
📄
906b5d59de170e528244744b925a8af5.spc
97.16 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
91e1e8b556ae254fb44c93230478d3bb.spc
1.78 MB
10/05/2023 07:56:18 AM
rwxrwxrwx
📄
925665a1ef421d5783a6690aaf7df881.spc
93.5 KB
08/13/2024 02:27:32 PM
rwxrwxrwx
📄
92c4233c5ea49b0f47ba9af6486e17f6.spc
64.88 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
949df90c5a085c17de656881d6a5dc97.spc
65.9 KB
04/20/2023 03:33:39 PM
rwxrwxrwx
📄
94b8ccc457e138e62b74ac96766909fe.spc
43.53 KB
04/22/2022 07:57:52 AM
rwxrwxrwx
📄
9670648a5cd87103a2bc6c99e516dbd7.spc
254.78 KB
06/20/2024 08:52:37 AM
rwxrwxrwx
📄
96c4f97f5353d399aeef3f49fcc0bd5a.spc
57.63 KB
05/02/2024 07:13:41 AM
rwxrwxrwx
📄
992f7d4247b62b8e56c4a6445f64e04b.spc
144 bytes
04/20/2023 03:34:01 PM
rwxrwxrwx
📄
995cd56c60511ced48b0bb42e95ccb29.spc
85.8 KB
06/20/2024 08:52:38 AM
rwxrwxrwx
📄
99e1eb580536f979670980ef56caa779.spc
576.91 KB
06/16/2022 03:19:25 AM
rwxrwxrwx
📄
9af8106d738badb69af8dbe24a679341.spc
4.85 KB
05/23/2024 12:21:11 PM
rwxrwxrwx
📄
9b6240eda91c41ff776a575879c7a726.spc
54.8 KB
08/01/2023 07:53:36 AM
rwxrwxrwx
📄
9c32f356173958a68d3962b6f17561eb.spc
160 bytes
04/20/2023 03:33:37 PM
rwxrwxrwx
📄
9e292139809beeb488509c95614d3e76.spc
1.56 KB
02/18/2022 06:14:45 AM
rwxrwxrwx
📄
9fe45b1c96a67767d7c125aa8c27bebc.spc
2.54 KB
05/04/2024 06:41:03 AM
rwxrwxrwx
📄
Base.php
3.35 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
DB.php
4.6 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
File.php
4.19 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
Memcache.php
4.81 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
Memcached.php
5.27 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
MySQL.php
12.67 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
Redis.php
3.77 KB
04/17/2017 07:29:31 AM
rwxrwxrwx
📄
a0dd9524b935d91f0d0e610c7b9a1f95.spc
54.13 KB
06/20/2024 08:52:26 AM
rwxrwxrwx
📄
a0e811e382668a9493c9f9bcf755902f.spc
25.24 KB
03/30/2023 03:18:32 AM
rwxrwxrwx
📄
a11bb1233ce40192adba9cdb21a3613c.spc
132 bytes
08/04/2022 02:46:41 PM
rwxrwxrwx
📄
a12b910472ebb7b3a0c246d82cdec324.spc
165.79 KB
08/13/2024 02:27:36 PM
rw-r--r--
📄
a1306c489bd935407a80c0245167bb84.spc
428.11 KB
05/07/2024 06:36:58 AM
rwxrwxrwx
📄
a1e50aef8a606be18418a7d94b3bb8d2.spc
122.33 KB
10/20/2021 08:03:48 AM
rwxrwxrwx
📄
a2535462ba909c959bb0869d70ff56e8.spc
29.87 KB
08/13/2024 02:27:34 PM
rw-r--r--
📄
a314938317436bd1ebd038a1398b974f.spc
19.1 KB
06/06/2021 03:53:15 PM
rwxrwxrwx
📄
a40a776457ebfa5dcaef5c99f859250c.spc
121.25 KB
08/13/2024 02:27:30 PM
rwxrwxrwx
📄
a4ed082fee0233bdebb15a8f4a504fa6.spc
175.47 KB
10/06/2021 01:11:59 AM
rwxrwxrwx
📄
a576de3f9423beb68b07b459f555f5d8.spc
76.09 KB
07/26/2024 07:37:44 AM
rwxrwxrwx
📄
a8125aa761f75b13ea12ad2d89fbc3a6.spc
58.37 KB
03/11/2024 08:26:59 AM
rwxrwxrwx
📄
a889c422e716ac96d46950fb9c5ba801.spc
106.51 KB
09/29/2021 06:50:32 AM
rwxrwxrwx
📄
a989cfbb4ebcd4ea5aede2f8d18f6b80.spc
214.7 KB
07/26/2024 07:37:44 AM
rwxrwxrwx
📄
abfe9571c106187db93288b1ea97357a.spc
19.09 KB
08/28/2024 10:14:21 AM
rwxrwxrwx
📄
ac085086dda45b4acb5220884d7b42fb.spc
39.58 KB
07/07/2022 07:24:36 AM
rwxrwxrwx
📄
ad31539954a7a910a7ef71c0cff11e32.spc
651.17 KB
01/30/2024 07:39:04 AM
rwxrwxrwx
📄
adb7ca764a42bad01a0ccae2df09c2fa.spc
34.44 KB
08/13/2024 02:27:34 PM
rw-r--r--
📄
af4b85b1ea956523b25a690c1c87ed85.spc
7.54 KB
08/31/2023 01:11:41 AM
rwxrwxrwx
📄
b1ef373fca862552cd559336e342ca8d.spc
60.91 KB
06/20/2024 08:52:30 AM
rwxrwxrwx
📄
b1fc76c9199e2130438d81b6297c73fa.spc
123.07 KB
06/20/2024 08:52:16 AM
rwxrwxrwx
📄
b44b9e448df189cee8d7c7774273267b.spc
67.39 KB
08/28/2024 10:14:14 AM
rwxrwxrwx
📄
b5b9fb6ba1e724416126f7788d4bd8b7.spc
19.16 KB
07/09/2024 10:38:26 AM
rwxrwxrwx
📄
b8e453c2d1e800f71ad2abe6f7862197.spc
199 bytes
07/15/2024 04:03:41 AM
rwxrwxrwx
📄
b98b28ea3fd7b9216203c2195410da13.spc
185.21 KB
08/04/2022 02:47:08 PM
rwxrwxrwx
📄
bad310e570d6910886344039e409a70b.spc
58.37 KB
03/11/2024 08:26:58 AM
rwxrwxrwx
📄
bb3a0b2406a3458f919871c9bfac24d7.spc
78.58 KB
02/26/2023 07:17:42 AM
rwxrwxrwx
📄
bbb4e4b91e967dfb9857f287804d6854.spc
78.58 KB
06/20/2024 08:52:40 AM
rwxrwxrwx
📄
bc49456c91a82629235dab13b79d530c.spc
5.71 KB
06/06/2021 03:53:15 PM
rwxrwxrwx
📄
bd3c5c1472767419fe12061049343483.spc
122.03 KB
06/20/2024 08:52:16 AM
rwxrwxrwx
📄
beb279d0ed1b28135d1331bbeb778b85.spc
68.25 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
befdda147f5b773407a123a1eb9e1481.spc
20.58 KB
10/06/2021 12:44:17 AM
rwxrwxrwx
📄
c0c166f9ee4c843629b5b2b20a0a2086.spc
74.38 KB
02/26/2023 07:17:39 AM
rwxrwxrwx
📄
c168527cd70d44755d5e3dc302cff303.spc
96.85 KB
09/09/2024 03:09:14 PM
rwxrwxrwx
📄
c31156c2178130a5e98ebbb8b2f61319.spc
92.65 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
c330aaa4bb416ffe76b92bd7fa4a582a.spc
3.16 KB
09/09/2024 03:09:17 PM
rwxrwxrwx
📄
c3466198bca97aa364f02a5602bef651.spc
50.51 KB
10/06/2021 01:12:01 AM
rwxrwxrwx
📄
c37dda73a1483bdf0e7772e1e65479f1.spc
102.33 KB
12/28/2021 11:05:13 AM
rwxrwxrwx
📄
c49105af5fef08449f157af0549bf58b.spc
64.7 KB
06/20/2024 08:52:13 AM
rwxrwxrwx
📄
c5bf94a976a06fd3da7d2939ef9b2e93.spc
480.81 KB
07/17/2024 02:57:05 AM
rwxrwxrwx
📄
c5e0e65569698bc9792cddb93cca6c68.spc
118.78 KB
07/17/2024 02:56:56 AM
rwxrwxrwx
📄
c96754afef1f81a69a0494827bfa975c.spc
87.07 KB
08/28/2024 10:14:15 AM
rwxrwxrwx
📄
ca38db44e86990dad0ffc27892af2d69.spc
423.78 KB
06/20/2024 08:52:43 AM
rwxrwxrwx
📄
cb969645802f54c40492251f3bd3818b.spc
7.06 KB
01/09/2023 12:56:03 AM
rwxrwxrwx
📄
cbd50ddc468d429034821a3a21440e73.spc
57.07 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
cc3a8bf1cc63f8051fe7e45b14fca9fc.spc
61.94 KB
06/20/2024 08:52:24 AM
rwxrwxrwx
📄
ce8b24d13ad5a0054d9ae1efeee95609.spc
57.6 KB
04/20/2023 03:33:59 PM
rwxrwxrwx
📄
ce9a2f38c75aba09c31a410d4b086b2f.spc
28.28 KB
08/28/2024 10:14:20 AM
rwxrwxrwx
📄
cec2dda9e5518b2ca7efedcdddb289f2.spc
1.5 MB
05/23/2024 12:21:21 PM
rwxrwxrwx
📄
ced71a24d29f4c3018999b8ea94761ab.spc
35.85 KB
05/29/2024 06:44:43 AM
rwxrwxrwx
📄
d018492df7f0a66d8411103e06d305fa.spc
2.9 MB
05/08/2023 11:27:05 AM
rwxrwxrwx
📄
d266cfac3257b22a998f2f5b1bf8ac31.spc
35.77 KB
03/30/2023 03:18:34 AM
rwxrwxrwx
📄
d59464babf88adbd572cbf3240ae91da.spc
2.55 KB
06/08/2023 07:28:16 AM
rwxrwxrwx
📄
d63686ffe3376b92d8b4ba02a520a2bd.spc
40.59 KB
05/23/2024 12:21:17 PM
rwxrwxrwx
📄
d6c6d1245a9ca93671ff33ef06329534.spc
41.3 KB
07/26/2024 06:33:58 AM
rwxrwxrwx
📄
d816bb54778bcf17ba8ed16089bfa393.spc
47.04 KB
09/18/2021 04:23:17 AM
rwxrwxrwx
📄
d8c5aac1146a5e6b3c91488029d275be.spc
18.96 KB
07/06/2024 08:23:54 AM
rwxrwxrwx
📄
d8eefb559112e58cb4dab21367a186e2.spc
341.6 KB
07/17/2024 02:57:04 AM
rwxrwxrwx
📄
d9db250644ba2877f115f509ace5a7b5.spc
19.27 KB
01/25/2022 06:00:15 AM
rwxrwxrwx
📄
da5b74a1b7ac788a6c7db30034f9f799.spc
76.51 KB
07/05/2021 11:28:23 AM
rwxrwxrwx
📄
da7dd3f84bdafec1857c9c04b9b53f49.spc
117.83 KB
09/19/2021 04:56:42 AM
rwxrwxrwx
📄
daadcfa75586a3a6698743b245181714.spc
20.01 KB
08/03/2021 02:55:44 AM
rwxrwxrwx
📄
dad664e4362c3317a36adbd6bfa95d4c.spc
58.98 KB
07/26/2024 07:37:44 AM
rwxrwxrwx
📄
db6a0a5cfed88c8c6db5be3169997c27.spc
38.74 KB
04/20/2023 03:34:11 PM
rwxrwxrwx
📄
dbc9e5458fbfe789c8bd64599935a222.spc
161 bytes
10/13/2021 06:55:31 AM
rwxrwxrwx
📄
dc3bbfb8c5e33be6aec482a3a6c003cd.spc
260.91 KB
07/11/2024 09:08:36 AM
rwxrwxrwx
📄
dc689c7a8814cebe543897aa3a044b9e.spc
136 bytes
08/12/2021 11:09:46 AM
rwxrwxrwx
📄
dc7b0425002a35c26a812e42646cc5af.spc
110.95 KB
06/20/2024 08:52:14 AM
rwxrwxrwx
📄
df45183a85d0f0324d9f35c8c667f311.spc
123.39 KB
06/20/2024 08:52:14 AM
rwxrwxrwx
📄
e1d26f40ba214b9e9d94a92389e4d5d8.spc
130.79 KB
06/20/2024 08:52:36 AM
rwxrwxrwx
📄
e1ec95a656a063e573f412b2c7488133.spc
98.16 KB
06/20/2024 08:52:31 AM
rwxrwxrwx
📄
e2fe7980a50e21a17e83fde0f82077c6.spc
159 bytes
07/09/2022 04:43:03 PM
rwxrwxrwx
📄
e33522c8d17d816500b215c32a7b5849.spc
424.31 KB
06/20/2024 08:52:52 AM
rwxrwxrwx
📄
e398f7edc1ab874296c6c9fed54e4399.spc
57.99 KB
10/06/2021 12:44:15 AM
rwxrwxrwx
📄
e6748eb4f66ad85c15d3973ba8d274b3.spc
16.19 KB
10/02/2023 12:45:25 PM
rwxrwxrwx
📄
ea703f3e5c39f76615e5a8b975f794a2.spc
18.93 KB
09/03/2024 09:10:45 AM
rwxrwxrwx
📄
ee4eec2e7e2d0266fa0e6eb5a151c7e9.spc
56.4 KB
08/13/2024 02:27:34 PM
rwxrwxrwx
📄
ee5afdacabc2bf5b99888e862c58b0cb.spc
187 bytes
03/29/2024 01:06:45 AM
rwxrwxrwx
📄
eedc719891428769b3318fba58ebe6c8.spc
91.81 KB
02/18/2022 06:14:46 AM
rwxrwxrwx
📄
f3fc3643d931e468c7037823a54cc6c2.spc
3.97 MB
03/23/2022 06:28:34 PM
rwxrwxrwx
📄
f4114707b5c9cf5d98010c3a1f8b38ec.spc
141 bytes
04/20/2023 03:33:29 PM
rwxrwxrwx
📄
f52ed8c534a9a161e74c7b34e79c9f24.spc
60.07 KB
03/11/2024 08:26:57 AM
rwxrwxrwx
📄
f6bf66d8f1b939c68d68e9ae777c9ee1.spc
99.38 KB
08/01/2023 07:53:28 AM
rwxrwxrwx
📄
f718d57993920295b2d6ec7c8028db7b.spc
69.33 KB
07/17/2024 02:57:04 AM
rwxrwxrwx
📄
f72d38fe0ddd5db20158445a4e897562.spc
127 bytes
04/20/2023 03:33:43 PM
rwxrwxrwx
📄
f74498a86970a084e5ca639447042aa3.spc
89.37 KB
11/09/2021 01:53:26 PM
rwxrwxrwx
📄
f781c182570da74dd9393a580af5d0b5.spc
110.45 KB
02/21/2022 02:59:01 PM
rwxrwxrwx
📄
f7d657440800849c7fcaeb682984c7e6.spc
87.15 KB
09/09/2024 03:09:14 PM
rwxrwxrwx
📄
f81cbff939f27fcdc536cbf121abb8ad.spc
120.51 KB
08/31/2023 01:19:41 AM
rwxrwxrwx
📄
f84cd96c8a71b247154b19e30d315391.spc
24.9 KB
03/30/2023 03:18:29 AM
rwxrwxrwx
📄
f8a0bf8a6e507649e6924b7906ba448b.spc
16.56 KB
08/17/2021 11:08:36 AM
rwxrwxrwx
📄
f9cf779dc17343f7a142ab34fefeb6eb.spc
622.21 KB
07/15/2022 02:53:38 AM
rwxrwxrwx
📄
fa736b27a4ac645b8161f4a084aa97f7.spc
58.64 KB
03/11/2024 08:26:57 AM
rwxrwxrwx
📄
faff66c685366de77bd8b616b29f384f.spc
64.5 KB
10/06/2021 01:12:00 AM
rwxrwxrwx
📄
fbbc76af945486db16d13c379b759bde.spc
1.24 MB
05/23/2024 12:21:22 PM
rwxrwxrwx
📄
fbc57cfd03bf1e4ef525660536f2fc4c.spc
19.03 KB
09/03/2024 09:10:46 AM
rw-r--r--
📄
fcde86f9229908845a8ebdc70d387d67.spc
65.27 KB
10/06/2021 01:12:00 AM
rwxrwxrwx
📄
fd653df8381ec085d867b89d482aed73.spc
66.47 KB
09/09/2024 03:09:16 PM
rwxrwxrwx
📄
fd99424fd37ab7b5b16649d14b1f1d93.spc
90.79 KB
09/09/2024 03:09:17 PM
rwxrwxrwx
📄
fec16c4cebc5c84650054735667e7319.spc
34.25 KB
08/04/2022 02:47:10 PM
rwxrwxrwx
Editing: 20a75b688975a2d5d342eae9f4c33411.spc
Close
a:4:{s:5:"child";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:3:"RDF";a:1:{i:0;a:6:{s:4:"data";s:434:" ";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:1:{s:24:"http://purl.org/rss/1.0/";a:3:{s:7:"channel";a:1:{i:0;a:6:{s:4:"data";s:13:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:17:"http://arxiv.org/";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:3:{s:24:"http://purl.org/rss/1.0/";a:5:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:23:"cs updates on arXiv.org";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:17:"http://arxiv.org/";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:62:"Computer Science (cs) updates on the arXiv.org e-print archive";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:5:"items";a:1:{i:0;a:6:{s:4:"data";s:3:" ";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:3:"Seq";a:1:{i:0;a:6:{s:4:"data";s:1292:" ";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:2:"li";a:430:{i:0;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11832";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:1;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11833";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:2;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11834";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:3;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11835";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:4;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11836";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:5;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11837";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:6;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11838";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:7;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11839";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:8;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11840";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:9;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11841";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:10;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11842";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:11;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11843";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:12;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11844";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:13;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11845";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:14;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11846";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:15;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11847";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:16;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11848";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:17;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11849";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:18;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11850";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:19;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11852";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:20;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11853";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:21;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:22;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11857";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:23;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11858";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:24;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11859";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:25;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11860";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:26;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11878";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:27;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11887";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:28;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11891";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:29;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11894";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:30;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11897";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:31;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11902";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:32;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11908";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:33;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11909";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:34;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11910";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:35;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11911";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:36;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11914";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:37;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11918";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:38;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11920";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:39;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11922";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:40;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11923";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:41;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11924";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:42;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11926";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:43;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11927";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:44;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11929";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:45;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11933";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:46;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11934";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:47;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11936";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:48;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11939";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:49;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11942";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:50;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11950";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:51;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11951";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:52;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11953";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:53;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11955";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:54;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11956";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:55;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11960";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:56;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11964";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:57;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11965";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:58;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11966";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:59;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11970";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:60;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11972";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:61;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11980";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:62;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11981";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:63;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11982";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:64;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11985";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:65;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11989";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:66;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11992";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:67;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11994";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:68;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12000";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:69;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12005";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:70;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12006";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:71;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:72;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12008";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:73;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12010";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:74;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12013";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:75;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12020";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:76;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12022";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:77;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12024";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:78;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12026";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:79;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12027";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:80;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12031";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:81;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12034";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:82;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12035";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:83;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12036";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:84;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12037";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:85;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12039";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:86;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12043";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:87;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12044";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:88;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12046";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:89;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12048";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:90;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12050";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:91;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12052";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:92;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12055";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:93;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12057";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:94;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12061";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:95;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12062";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:96;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12063";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:97;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12064";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:98;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12067";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:99;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12069";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:100;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12070";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:101;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12071";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:102;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12072";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:103;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12073";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:104;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12076";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:105;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:106;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12079";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:107;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12081";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:108;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12084";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:109;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12085";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:110;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12088";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:111;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12089";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:112;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12092";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:113;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12093";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:114;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12095";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:115;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12100";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:116;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12103";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:117;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12105";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:118;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12106";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:119;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12108";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:120;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12109";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:121;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12111";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:122;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12112";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:123;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12115";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:124;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12117";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:125;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12120";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:126;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12121";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:127;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12125";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:128;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12129";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:129;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12130";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:130;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12133";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:131;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12139";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:132;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12143";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:133;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12144";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:134;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12148";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:135;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12150";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:136;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12151";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:137;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12153";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:138;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12155";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:139;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12156";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:140;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12158";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:141;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12159";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:142;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12160";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:143;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12162";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:144;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12164";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:145;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12165";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:146;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12169";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:147;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12173";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:148;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12176";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:149;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12177";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:150;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12181";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:151;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12184";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:152;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12185";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:153;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12186";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:154;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12190";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:155;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12191";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:156;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12193";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:157;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12195";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:158;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12196";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:159;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12197";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:160;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12200";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:161;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12201";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:162;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12202";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:163;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12204";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:164;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12219";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:165;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12223";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:166;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12225";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:167;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12227";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:168;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12230";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:169;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12231";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:170;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12237";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:171;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12243";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:172;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12244";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:173;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12253";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:174;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12254";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:175;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12260";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:176;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12261";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:177;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12263";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:178;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12264";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:179;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12266";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:180;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12267";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:181;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12270";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:182;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12274";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:183;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12279";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:184;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12280";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:185;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12281";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:186;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12283";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:187;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12284";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:188;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12288";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:189;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12289";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:190;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12290";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:191;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12293";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:192;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12294";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:193;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12296";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:194;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12297";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:195;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12298";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:196;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12300";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:197;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12301";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:198;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12302";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:199;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12303";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:200;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12307";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:201;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12308";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:202;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12309";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:203;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12311";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:204;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12316";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:205;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12318";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:206;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12322";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:207;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12326";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:208;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12330";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:209;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12333";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:210;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12338";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:211;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12340";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:212;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12344";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:213;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12347";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:214;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12357";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:215;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12358";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:216;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12363";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:217;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12365";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:218;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12366";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:219;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:220;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12368";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:221;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12371";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:222;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12376";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:223;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12378";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:224;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12379";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:225;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12380";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:226;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12384";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:227;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12386";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:228;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12390";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:229;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12393";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:230;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12397";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:231;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12399";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:232;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12402";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:233;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12404";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:234;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12406";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:235;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12408";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:236;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:237;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12415";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:238;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12416";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:239;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12418";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:240;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12420";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:241;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12421";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:242;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12423";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:243;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12425";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:244;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12426";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:245;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12430";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:246;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12432";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:247;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12433";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:248;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12436";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:249;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12440";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:250;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12441";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:251;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12442";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:252;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12443";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:253;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12445";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:254;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12446";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:255;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12451";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:256;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12454";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:257;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12456";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:258;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12458";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:259;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12463";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:260;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12466";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:261;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12467";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:262;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12468";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:263;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12471";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:264;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12477";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:265;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12481";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:266;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12484";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:267;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12486";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:268;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12488";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:269;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12489";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:270;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.12490";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:271;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/1906.01566";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:272;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/1908.09881";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:273;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/1909.03354";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:274;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2001.09046";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:275;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2001.11107";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:276;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2003.12841";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:277;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2005.10878";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:278;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2006.07200";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:279;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2008.03946";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:280;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2010.06097";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:281;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2010.15776";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:282;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2011.11201";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:283;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2011.12267";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:284;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2011.13730";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:285;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2101.02023";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:286;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2102.08146";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:287;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2102.08577";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:288;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2102.13086";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:289;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2103.01648";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:290;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2103.01997";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:291;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2103.07615";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:292;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2104.00462";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:293;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2104.08559";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:294;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2104.13137";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:295;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2104.14349";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:296;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2104.14750";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:297;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2105.13634";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:298;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2105.13880";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:299;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2105.14435";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:300;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2106.00186";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:301;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2106.00903";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:302;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2106.07243";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:303;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2106.13170";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:304;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2106.14104";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:305;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.02288";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:306;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.04438";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:307;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.04642";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:308;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.05131";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:309;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.05247";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:310;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2107.06433";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:311;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2108.00941";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:312;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2108.05761";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:313;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2108.09498";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:314;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.04517";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:315;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.05067";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:316;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.08377";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:317;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.09374";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:318;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.10756";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:319;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.11224";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:320;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2109.12384";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:321;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.00909";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:322;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.01931";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:323;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.02007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:324;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.03684";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:325;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.03855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:326;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.06354";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:327;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.07855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:328;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.07957";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:329;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.10106";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:330;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.11996";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:331;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.12194";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:332;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.12899";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:333;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2110.13721";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:334;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.00134";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:335;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.04473";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:336;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.04476";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:337;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.04877";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:338;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.06343";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:339;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.08284";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:340;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.08516";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:341;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.09388";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:342;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.09996";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:343;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.10367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:344;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.12860";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:345;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.14055";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:346;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.14705";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:347;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2111.15367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:348;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.00913";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:349;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.02731";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:350;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.06147";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:351;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.06377";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:352;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.06455";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:353;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.07428";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:354;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.08908";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:355;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.10601";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:356;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.11635";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:357;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.12021";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:358;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2112.13168";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:359;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.03413";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:360;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.04196";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:361;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.07265";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:362;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.09367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:363;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.09419";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:364;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.11329";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:365;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.11410";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:366;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.11965";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:367;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.11968";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:368;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2201.12409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:369;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.06594";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:370;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.09008";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:371;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.09028";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:372;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.09637";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:373;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.09971";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:374;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.11149";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:375;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.11902";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:376;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.13898";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:377;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.00449";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:378;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.01360";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:379;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.02077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:380;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.03634";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:381;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.04180";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:382;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.05400";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:383;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.08073";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:384;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.10077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:385;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.10992";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:386;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.13209";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:387;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.13250";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:388;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.14003";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:389;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2203.16401";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:390;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.00716";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:391;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.01172";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:392;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.02255";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:393;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.06173";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:394;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.06466";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:395;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.07341";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:396;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.07352";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:397;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.07462";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:398;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.07570";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:399;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.08479";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:400;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.08714";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:401;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.09007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:402;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.09110";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:403;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.09409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:404;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.09649";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:405;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10022";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:406;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10072";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:407;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10160";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:408;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10169";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:409;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10178";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:410;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10479";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:411;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10584";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:412;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10836";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:413;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10869";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:414;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10893";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:415;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.10938";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:416;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11025";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:417;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11368";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:418;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11382";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:419;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11411";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:420;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11582";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:421;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11587";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:422;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11639";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:423;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11797";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:424;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11817";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:425;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11824";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:426;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2202.04915";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:427;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11188";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:428;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11338";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}i:429;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:31:"http://arxiv.org/abs/2204.11593";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}}}}}}s:5:"image";a:1:{i:0;a:5:{s:4:"data";s:0:"";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:8:"resource";s:30:"http://arxiv.org/icons/sfx.gif";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:4:{s:8:"language";a:1:{i:0;a:5:{s:4:"data";s:5:"en-us";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"date";a:1:{i:0;a:5:{s:4:"data";s:25:"2022-04-26T20:30:00-05:00";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:9:"publisher";a:1:{i:0;a:5:{s:4:"data";s:19:"www-admin@arxiv.org";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:7:"subject";a:1:{i:0;a:5:{s:4:"data";s:16:"Computer Science";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:44:"http://purl.org/rss/1.0/modules/syndication/";a:3:{s:10:"updateBase";a:1:{i:0;a:5:{s:4:"data";s:22:"1901-01-01T00:00+00:00";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:15:"updateFrequency";a:1:{i:0;a:5:{s:4:"data";s:1:"1";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:12:"updatePeriod";a:1:{i:0;a:5:{s:4:"data";s:5:"daily";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}}s:5:"image";a:1:{i:0;a:6:{s:4:"data";s:4:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:30:"http://arxiv.org/icons/sfx.gif";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:1:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:9:"arXiv.org";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:3:"url";a:1:{i:0;a:5:{s:4:"data";s:30:"http://arxiv.org/icons/sfx.gif";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:17:"http://arxiv.org/";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}}s:4:"item";a:430:{i:0;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11832";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"Machine learning identification of organic compounds using visible light. (arXiv:2204.11832v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11832";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1112:"<p>Identifying chemical compounds is essential in several areas of science and engineering. Laser-based techniques are promising for autonomous compound detection because the optical response of materials encodes enough electronic and vibrational information for remote chemical identification. This has been exploited using the fingerprint region of infrared absorption spectra, which involves a large number of absorption peaks that are unique to individual molecules, thus facilitating chemical identification. However, optical identification using visible light has not been realized. Using decades of experimental refractive index data in the scientific literature of pure organic compounds and polymers over a broad range of frequencies from the ultraviolet to the far-infrared, we develop a machine learning classifier that can accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols or applications. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:342:" <a href="http://arxiv.org/find/cs/1/au:+Bikku_T/0/1/0/all/0/1">Thulasi Bikku</a>, <a href="http://arxiv.org/find/cs/1/au:+Fritz_R/0/1/0/all/0/1">Rubén A. Fritz</a>, <a href="http://arxiv.org/find/cs/1/au:+Colon_Y/0/1/0/all/0/1">Yamil J. Colón</a>, <a href="http://arxiv.org/find/cs/1/au:+Herrera_F/0/1/0/all/0/1">Felipe Herrera</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:1;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11833";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"Joint Learning of Reward Machines and Policies in Environments with Partially Known Semantics. (arXiv:2204.11833v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11833";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1681:"<p>We study the problem of reinforcement learning for a task encoded by a reward machine. The task is defined over a set of properties in the environment, called atomic propositions, and represented by Boolean variables. One unrealistic assumption commonly used in the literature is that the truth values of these propositions are accurately known. In real situations, however, these truth values are uncertain since they come from sensors that suffer from imperfections. At the same time, reward machines can be difficult to model explicitly, especially when they encode complicated tasks. We develop a reinforcement-learning algorithm that infers a reward machine that encodes the underlying task while learning how to execute it, despite the uncertainties of the propositions' truth values. In order to address such uncertainties, the algorithm maintains a probabilistic estimate about the truth value of the atomic propositions; it updates this estimate according to new sensory measurements that arrive from the exploration of the environment. Additionally, the algorithm maintains a hypothesis reward machine, which acts as an estimate of the reward machine that encodes the task to be learned. As the agent explores the environment, the algorithm updates the hypothesis reward machine according to the obtained rewards and the estimate of the atomic propositions' truth value. Finally, the algorithm uses a Q-learning procedure for the states of the hypothesis reward machine to determine the policy that accomplishes the task. We prove that the algorithm successfully infers the reward machine and asymptotically learns a policy that accomplishes the respective task. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:343:" <a href="http://arxiv.org/find/cs/1/au:+Verginis_C/0/1/0/all/0/1">Christos Verginis</a>, <a href="http://arxiv.org/find/cs/1/au:+Koprulu_C/0/1/0/all/0/1">Cevahir Koprulu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chinchali_S/0/1/0/all/0/1">Sandeep Chinchali</a>, <a href="http://arxiv.org/find/cs/1/au:+Topcu_U/0/1/0/all/0/1">Ufuk Topcu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:2;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11834";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"Accelerating Machine Learning via the Weber-Fechner Law. (arXiv:2204.11834v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11834";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:578:"<p>The Weber-Fechner Law observes that human perception scales as the logarithm of the stimulus. We argue that learning algorithms for human concepts could benefit from the Weber-Fechner Law. Specifically, we impose Weber-Fechner on simple neural networks, with or without convolution, via the logarithmic power series of their sorted output. Our experiments show surprising performance and accuracy on the MNIST data set within a few training iterations and limited computational resources, suggesting that Weber-Fechner can accelerate machine learning of human concepts. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:80:" <a href="http://arxiv.org/find/cs/1/au:+Kausik_B/0/1/0/all/0/1">B.N. Kausik</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:3;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11835";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:166:"A Novel Scalable Apache Spark Based Feature Extraction Approaches for Huge Protein Sequence and their Clustering Performance Analysis. (arXiv:2204.11835v1 [q-bio.QM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11835";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1872:"<p>Genome sequencing projects are rapidly increasing the number of high-dimensional protein sequence datasets. Clustering a high-dimensional protein sequence dataset using traditional machine learning approaches poses many challenges. Many different feature extraction methods exist and are widely used. However, extracting features from millions of protein sequences becomes impractical because they are not scalable with current algorithms. Therefore, there is a need for an efficient feature extraction approach that extracts significant features. We have proposed two scalable feature extraction approaches for extracting features from huge protein sequences using Apache Spark, which are termed 60d-SPF (60-dimensional Scalable Protein Feature) and 6d-SCPSF (6-dimensional Scalable Co-occurrence-based Probability-Specific Feature). The proposed 60d-SPF and 6d-SCPSF approaches capture the statistical properties of amino acids to create a fixed-length numeric feature vector that represents each protein sequence in terms of 60-dimensional and 6-dimensional features, respectively. The preprocessed huge protein sequences are used as an input in two clustering algorithms, i.e., Scalable Random Sampling with Iterative Optimization Fuzzy c-Means (SRSIO-FCM) and Scalable Literal Fuzzy C-Means (SLFCM) for clustering. We have conducted extensive experiments on various soybean protein datasets to demonstrate the effectiveness of the proposed feature extraction methods, 60d-SPF, 6d-SCPSF, and existing feature extraction methods on SRSIO-FCM and SLFCM clustering algorithms. The reported results in terms of the Silhouette index and the Davies-Bouldin index show that the proposed 60d-SPF extraction method on SRSIO-FCM and SLFCM clustering algorithms achieves significantly better results than the proposed 6d-SCPSF and existing feature extraction approaches. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:706:" <a href="http://arxiv.org/find/q-bio/1/au:+Jha_P/0/1/0/all/0/1">Preeti Jha</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Tiwari_A/0/1/0/all/0/1">Aruna Tiwari</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Bharill_N/0/1/0/all/0/1">Neha Bharill</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Ratnaparkhe_M/0/1/0/all/0/1">Milind Ratnaparkhe</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Patel_O/0/1/0/all/0/1">Om Prakash Patel</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Harshith_N/0/1/0/all/0/1">Nilagiri Harshith</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Mounika_M/0/1/0/all/0/1">Mukkamalla Mounika</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Nagendra_N/0/1/0/all/0/1">Neha Nagendra</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:4;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11836";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:147:"Automated detection of dark patterns in cookie banners: how to do it poorly and why it is hard to do it any other way. (arXiv:2204.11836v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11836";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1116:"<p>Cookie banners, the pop ups that appear to collect your consent for data collection, are a tempting ground for dark patterns. Dark patterns are design elements that are used to influence the user's choice towards an option that is not in their interest. The use of dark patterns renders consent elicitation meaningless and voids the attempts to improve a fair collection and use of data. Can machine learning be used to automatically detect the presence of dark patterns in cookie banners? In this work, a dataset of cookie banners of 300 news websites was used to train a prediction model that does exactly that. The machine learning pipeline we used includes feature engineering, parameter search, training a Gradient Boosted Tree classifier and evaluation. The accuracy of the trained model is promising, but allows a lot of room for improvement. We provide an in-depth analysis of the interdisciplinary challenges that automated dark pattern detection poses to artificial intelligence. The dataset and all the code created using machine learning is available at the url to repository removed for review. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:263:" <a href="http://arxiv.org/find/cs/1/au:+Soe_T/0/1/0/all/0/1">Than Htut Soe</a>, <a href="http://arxiv.org/find/cs/1/au:+Santos_C/0/1/0/all/0/1">Cristiana Teixeira Santos</a>, <a href="http://arxiv.org/find/cs/1/au:+Slavkovik_M/0/1/0/all/0/1">Marija Slavkovik</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:5;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11837";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:69:"A Mask-Based Adversarial Defense Scheme. (arXiv:2204.11837v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11837";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1124:"<p>Adversarial attacks hamper the functionality and accuracy of Deep Neural Networks (DNNs) by meddling with subtle perturbations to their inputs.In this work, we propose a new Mask-based Adversarial Defense scheme (MAD) for DNNs to mitigate the negative effect from adversarial attacks. To be precise, our method promotes the robustness of a DNN by randomly masking a portion of potential adversarial images, and as a result, the %classification result output of the DNN becomes more tolerant to minor input perturbations. Compared with existing adversarial defense techniques, our method does not need any additional denoising structure, nor any change to a DNN's design. We have tested this approach on a collection of DNN models for a variety of data sets, and the experimental results confirm that the proposed method can effectively improve the defense abilities of the DNNs against all of the tested adversarial attack methods. In certain scenarios, the DNN models trained with MAD have improved classification accuracy by as much as 20% to 90% compared to the original models that are given adversarial inputs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:317:" <a href="http://arxiv.org/find/cs/1/au:+Xu_W/0/1/0/all/0/1">Weizhen Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_C/0/1/0/all/0/1">Chenyi Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_F/0/1/0/all/0/1">Fangzhen Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Fang_L/0/1/0/all/0/1">Liangda Fang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:6;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11838";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:82:"Automating Neural Architecture Design without Search. (arXiv:2204.11838v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11838";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1499:"<p>Neural structure search (NAS), as the mainstream approach to automate deep neural architecture design, has achieved much success in recent years. However, the performance estimation component adhering to NAS is often prohibitively costly, which leads to the enormous computational demand. Though a large number of efforts have been dedicated to alleviating this pain point, no consensus has been made yet on which is optimal. In this paper, we study the automated architecture design from a new perspective that eliminates the need to sequentially evaluate each neural architecture generated during algorithm execution. Specifically, the proposed approach is built by learning the knowledge of high-level experts in designing state-of-the-art architectures, and then the new architecture is directly generated upon the knowledge learned. We implemented the proposed approach by using a graph neural network for link prediction and acquired the knowledge from NAS-Bench-101. Compared to existing peer competitors, we found a competitive network with minimal cost. In addition, we also utilized the learned knowledge from NAS-Bench-101 to automate architecture design in the DARTS search space, and achieved 97.82% accuracy on CIFAR10, and 76.51% top-1 accuracy on ImageNet consuming only $2\times10^{-4}$ GPU days. This also demonstrates the high transferability of the proposed approach, and can potentially lead to a new, more computationally efficient paradigm in this research direction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:156:" <a href="http://arxiv.org/find/cs/1/au:+Liang_Z/0/1/0/all/0/1">Zixuan Liang</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_Y/0/1/0/all/0/1">Yanan Sun</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:7;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11839";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:62:"AU-NN: ANFIS Unit Neural Network. (arXiv:2204.11839v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11839";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:814:"<p>In this paper is described the ANFIS Unit Neural Network, a deep neural network where each neuron is an independent ANFIS. Two use cases of this network are shown to test the capability of the network. (i) Classification of five imagined words. (ii) Incremental learning in the task of detecting Imagined Word Segments vs. Idle State Segments. In both cases, the proposed network outperforms the conventional methods. Additionally, is described a process of classification where instead of taking the whole instance as one example, each instance is decomposed into a set of smaller instances, and the classification is done by a majority vote over all the predictions of the set. The codes to build the AU-NN used in this paper, are available on the github repository https://github.com/tonahdztoro/AU_NN. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:324:" <a href="http://arxiv.org/find/cs/1/au:+Hernandez_del_Toro_T/0/1/0/all/0/1">Tonatiuh Hernández-del-Toro</a>, <a href="http://arxiv.org/find/cs/1/au:+Reyes_Garcia_C/0/1/0/all/0/1">Carlos A. Reyes-García</a>, <a href="http://arxiv.org/find/cs/1/au:+Villasenor_Pineda_L/0/1/0/all/0/1">Luis Villaseñor-Pineda</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:8;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11840";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:116:"Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-machine Interface. (arXiv:2204.11840v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11840";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1492:"<p>Objective: Brain-machine interfaces (BMIs) aim to provide direct brain control of devices such as prostheses and computer cursors, which have demonstrated great potential for mobility restoration. One major limitation of current BMIs lies in the unstable performance in online control due to the variability of neural signals, which seriously hinders the clinical availability of BMIs. Method: To deal with the neural variability in online BMI control, we propose a dynamic ensemble Bayesian filter (DyEnsemble). DyEnsemble extends Bayesian filters with a dynamic measurement model, which adjusts its parameters in time adaptively with neural changes. This is achieved by learning a pool of candidate functions and dynamically weighting and assembling them according to neural signals. In this way, DyEnsemble copes with variability in signals and improves the robustness of online control. Results: Online BMI experiments with a human participant demonstrate that, compared with the velocity Kalman filter, DyEnsemble significantly improves the control accuracy (increases the success rate by 13.9% and reduces the reach time by 13.5% in the random target pursuit task) and robustness (performs more stably over different experiment days). Conclusion: Our results demonstrate the superiority of DyEnsemble in online BMI control. Significance: DyEnsemble frames a novel and flexible framework for robust neural decoding, which is beneficial to different neural decoding applications. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:695:" <a href="http://arxiv.org/find/cs/1/au:+Qi_Y/0/1/0/all/0/1">Yu Qi</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_X/0/1/0/all/0/1">Xinyun Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_K/0/1/0/all/0/1">Kedi Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Ren_F/0/1/0/all/0/1">Feixiao Ren</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_H/0/1/0/all/0/1">Hongjie Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_J/0/1/0/all/0/1">Junming Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jianmin Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Pan_G/0/1/0/all/0/1">Gang Pan</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yueming Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:9;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11841";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"A Closer Look at Personalization in Federated Image Classification. (arXiv:2204.11841v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11841";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1679:"<p>Federated Learning (FL) is developed to learn a single global model across the decentralized data, while is susceptible when realizing client-specific personalization in the presence of statistical heterogeneity. However, studies focus on learning a robust global model or personalized classifiers, which yield divergence due to inconsistent objectives. This paper shows that it is possible to achieve flexible personalization after the convergence of the global model by introducing representation learning. In this paper, we first analyze and determine that non-IID data harms representation learning of the global model. Existing FL methods adhere to the scheme of jointly learning representations and classifiers, where the global model is an average of classification-based local models that are consistently subject to heterogeneity from non-IID data. As a solution, we separate representation learning from classification learning in FL and propose RepPer, an independent two-stage personalized FL framework.We first learn the client-side feature representation models that are robust to non-IID data and aggregate them into a global common representation model. After that, we achieve personalization by learning a classifier head for each client, based on the common representation obtained at the former stage. Notably, the proposed two-stage learning scheme of RepPer can be potentially used for lightweight edge computing that involves devices with constrained computation power.Experiments on various datasets (CIFAR-10/100, CINIC-10) and heterogeneous data setup show that RepPer outperforms alternatives in flexibility and personalization on non-IID data. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:557:" <a href="http://arxiv.org/find/cs/1/au:+Jing_C/0/1/0/all/0/1">Changxing Jing</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_Y/0/1/0/all/0/1">Yan Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhuang_Y/0/1/0/all/0/1">Yihong Zhuang</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_L/0/1/0/all/0/1">Liyan Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_Y/0/1/0/all/0/1">Yue Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiao_Z/0/1/0/all/0/1">Zhenlong Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Ding_X/0/1/0/all/0/1">Xinghao Ding</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:10;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11842";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"Adaptive Online Value Function Approximation with Wavelets. (arXiv:2204.11842v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11842";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1343:"<p>Using function approximation to represent a value function is necessary for continuous and high-dimensional state spaces. Linear function approximation has desirable theoretical guarantees and often requires less compute and samples than neural networks, but most approaches suffer from an exponential growth in the number of functions as the dimensionality of the state space increases. In this work, we introduce the wavelet basis for reinforcement learning. Wavelets can effectively be used as a fixed basis and additionally provide the ability to adaptively refine the basis set as learning progresses, making it feasible to start with a minimal basis set. This adaptive method can either increase the granularity of the approximation at a point in state space, or add in interactions between different dimensions as necessary. We prove that wavelets are both necessary and sufficient if we wish to construct a function approximator that can be adaptively refined without loss of precision. We further demonstrate that a fixed wavelet basis set performs comparably against the high-performing Fourier basis on Mountain Car and Acrobot, and that the adaptive methods provide a convenient approach to addressing an oversized initial basis set, while demonstrating performance comparable to, or greater than, the fixed wavelet basis. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:424:" <a href="http://arxiv.org/find/cs/1/au:+Beukman_M/0/1/0/all/0/1">Michael Beukman</a>, <a href="http://arxiv.org/find/cs/1/au:+Mitchley_M/0/1/0/all/0/1">Michael Mitchley</a>, <a href="http://arxiv.org/find/cs/1/au:+Wookey_D/0/1/0/all/0/1">Dean Wookey</a>, <a href="http://arxiv.org/find/cs/1/au:+James_S/0/1/0/all/0/1">Steven James</a>, <a href="http://arxiv.org/find/cs/1/au:+Konidaris_G/0/1/0/all/0/1">George Konidaris</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:11;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11843";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"A Computational Theory of Learning Flexible Reward-Seeking Behavior with Place Cells. (arXiv:2204.11843v1 [q-bio.NC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11843";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1462:"<p>An important open question in computational neuroscience is how various spatially tuned neurons, such as place cells, are used to support the learning of reward-seeking behavior of an animal. Existing computational models either lack biological plausibility or fall short of behavioral flexibility when environments change. In this paper, we propose a computational theory that achieves behavioral flexibility with better biological plausibility. We first train a mixture of Gaussian distributions to model the ensemble of firing fields of place cells. Then we propose a Hebbian-like rule to learn the synaptic strength matrix among place cells. This matrix is interpreted as the transition rate matrix of a continuous time Markov chain to generate the sequential replay of place cells. During replay, the synaptic strengths from place cells to medium spiny neurons (MSN) are learned by a temporal-difference like rule to store place-reward associations. After replay, the activation of MSN will ramp up when an animal approaches the rewarding place, so the animal can move along the direction where the MSN activation is increasing to find the rewarding place. We implement our theory into a high-fidelity virtual rat in the MuJoCo physics simulator. In a complex maze, the rat shows significantly better learning efficiency and behavioral flexibility than a rat that implements a neuroscience-inspired reinforcement learning algorithm, deep Q-network. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:82:" <a href="http://arxiv.org/find/q-bio/1/au:+Gao_Y/0/1/0/all/0/1">Yuanxiang Gao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:12;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11844";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"From Monolith to Microservices: Static and Dynamic Analysis Comparison. (arXiv:2204.11844v1 [cs.SE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11844";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1025:"<p>One of the most challenging problems in the migration of a monolith to a microservices architecture is the identification of the microservices boundaries. Several approaches have been recently proposed for the automatic identification of microservices, which, even though following the same basic steps, diverge on how data of the monolith system is collected and analysed. In this paper, we compare the decompositions generated for two monolith systems into a set of candidate microservices, when static and dynamic analysis data collection techniques are used. The decompositions are generated using a combination of similarity measures and are evaluated according to a complexity metric to answer the following research question: which collection of monolith data, static or dynamic analysis, allows to generate better decompositions? As result of the analysis we conclude that neither of the analysis techniques, static nor dynamic, outperforms the other, but the dynamic collection of data requires more effort. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:261:" <a href="http://arxiv.org/find/cs/1/au:+Andrade_B/0/1/0/all/0/1">Bernardo Andrade</a>, <a href="http://arxiv.org/find/cs/1/au:+Santos_S/0/1/0/all/0/1">Samuel Santos</a>, <a href="http://arxiv.org/find/cs/1/au:+Silva_A/0/1/0/all/0/1">António Rito Silva</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:13;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11845";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Logistic-ELM: A Novel Fault Diagnosis Method for Rolling Bearings. (arXiv:2204.11845v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11845";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1602:"<p>The fault diagnosis of rolling bearings is a critical technique to realize predictive maintenance for mechanical condition monitoring. In real industrial systems, the main challenges for the fault diagnosis of rolling bearings pertain to the accuracy and real-time requirements. Most existing methods focus on ensuring the accuracy, and the real-time requirement is often neglected. In this paper, considering both requirements, we propose a novel fast fault diagnosis method for rolling bearings, based on extreme learning machine (ELM) and logistic mapping, named logistic-ELM. First, we identify 14 kinds of time-domain features from the original vibration signals according to mechanical vibration principles and adopt the sequential forward selection (SFS) strategy to select optimal features from them to ensure the basic predictive accuracy and efficiency. Next, we propose the logistic-ELM for fast fault classification, where the biases in ELM are omitted and the random input weights are replaced by the chaotic logistic mapping sequence which involves a higher uncorrelation to obtain more accurate results with fewer hidden neurons. We conduct extensive experiments on the rolling bearing vibration signal dataset of the Case Western Reserve University (CWRU) Bearing Data Centre. The experimental results show that the proposed approach outperforms existing SOTA comparison methods in terms of the predictive accuracy, and the highest accuracy is 100% in seven separate sub data environments. The relevant code is publicly available at https://github.com/TAN-OpenLab/logistic-ELM. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:384:" <a href="http://arxiv.org/find/cs/1/au:+Tan_Z/0/1/0/all/0/1">Zhenhua Tan</a>, <a href="http://arxiv.org/find/cs/1/au:+Ning_J/0/1/0/all/0/1">Jingyu Ning</a>, <a href="http://arxiv.org/find/cs/1/au:+Peng_K/0/1/0/all/0/1">Kai Peng</a>, <a href="http://arxiv.org/find/cs/1/au:+Xia_Z/0/1/0/all/0/1">Zhenche Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_D/0/1/0/all/0/1">Danke Wu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:14;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11846";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:54:"Graphical Residual Flows. (arXiv:2204.11846v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11846";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:981:"<p>Graphical flows add further structure to normalizing flows by encoding non-trivial variable dependencies. Previous graphical flow models have focused primarily on a single flow direction: the normalizing direction for density estimation, or the generative direction for inference. However, to use a single flow to perform tasks in both directions, the model must exhibit stable and efficient flow inversion. This work introduces graphical residual flows, a graphical flow based on invertible residual networks. Our approach to incorporating dependency information in the flow, means that we are able to calculate the Jacobian determinant of these flows exactly. Our experiments confirm that graphical residual flows provide stable and accurate inversion that is also more time-efficient than alternative flows with similar task performance. Furthermore, our model provides performance competitive with other graphical flows for both density estimation and inference tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:163:" <a href="http://arxiv.org/find/cs/1/au:+Mouton_J/0/1/0/all/0/1">Jacobie Mouton</a>, <a href="http://arxiv.org/find/cs/1/au:+Kroon_S/0/1/0/all/0/1">Steve Kroon</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:15;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11847";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks. (arXiv:2204.11847v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11847";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:930:"<p>Initial work on variational autoencoders assumed independent latent variables with simple distributions. Subsequent work has explored incorporating more complex distributions and dependency structures: including normalizing flows in the encoder network allows latent variables to entangle non-linearly, creating a richer class of distributions for the approximate posterior, and stacking layers of latent variables allows more complex priors to be specified for the generative model. This work explores incorporating arbitrary dependency structures, as specified by Bayesian networks, into VAEs. This is achieved by extending both the prior and inference network with graphical residual flows - residual flows that encode conditional independence by masking the weight matrices of the flow's residual blocks. We compare our model's performance on several synthetic datasets and show its potential in data-sparse settings. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:163:" <a href="http://arxiv.org/find/cs/1/au:+Mouton_J/0/1/0/all/0/1">Jacobie Mouton</a>, <a href="http://arxiv.org/find/cs/1/au:+Kroon_S/0/1/0/all/0/1">Steve Kroon</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:16;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11848";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:120:"On Leveraging Variational Graph Embeddings for Open World Compositional Zero-Shot Learning. (arXiv:2204.11848v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11848";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1401:"<p>Humans are able to identify and categorize novel compositions of known concepts. The task in Compositional Zero-Shot learning (CZSL) is to learn composition of primitive concepts, i.e. objects and states, in such a way that even their novel compositions can be zero-shot classified. In this work, we do not assume any prior knowledge on the feasibility of novel compositions i.e.open-world setting, where infeasible compositions dominate the search space. We propose a Compositional Variational Graph Autoencoder (CVGAE) approach for learning the variational embeddings of the primitive concepts (nodes) as well as feasibility of their compositions (via edges). Such modelling makes CVGAE scalable to real-world application scenarios. This is in contrast to SOTA method, CGE, which is computationally very expensive. e.g.for benchmark C-GQA dataset, CGE requires 3.94 x 10^5 nodes, whereas CVGAE requires only 1323 nodes. We learn a mapping of the graph and image embeddings onto a common embedding space. CVGAE adopts a deep metric learning approach and learns a similarity metric in this space via bi-directional contrastive loss between projected graph and image embeddings. We validate the effectiveness of our approach on three benchmark datasets.We also demonstrate via an image retrieval task that the representations learnt by CVGAE are better suited for compositional generalization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:261:" <a href="http://arxiv.org/find/cs/1/au:+Anwaar_M/0/1/0/all/0/1">Muhammad Umer Anwaar</a>, <a href="http://arxiv.org/find/cs/1/au:+Pan_Z/0/1/0/all/0/1">Zhihui Pan</a>, <a href="http://arxiv.org/find/cs/1/au:+Kleinsteuber_M/0/1/0/all/0/1">Martin Kleinsteuber</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:17;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11849";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:133:"Heterogeneous Information Network based Default Analysis on Banking Micro and Small Enterprise Users. (arXiv:2204.11849v1 [q-fin.RM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11849";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1657:"<p>Risk assessment is a substantial problem for financial institutions that has been extensively studied both for its methodological richness and its various practical applications. With the expansion of inclusive finance, recent attentions are paid to micro and small-sized enterprises (MSEs). Compared with large companies, MSEs present a higher exposure rate to default owing to their insecure financial stability. Conventional efforts learn classifiers from historical data with elaborate feature engineering. However, the main obstacle for MSEs involves severe deficiency in credit-related information, which may degrade the performance of prediction. Besides, financial activities have diverse explicit and implicit relations, which have not been fully exploited for risk judgement in commercial banks. In particular, the observations on real data show that various relationships between company users have additional power in financial risk analysis. In this paper, we consider a graph of banking data, and propose a novel HIDAM model for the purpose. Specifically, we attempt to incorporate heterogeneous information network with rich attributes on multi-typed nodes and links for modeling the scenario of business banking service. To enhance feature representation of MSEs, we extract interactive information through meta-paths and fully exploit path information. Furthermore, we devise a hierarchical attention mechanism respectively to learn the importance of contents inside each meta-path and the importance of different metapahs. Experimental results verify that HIDAM outperforms state-of-the-art competitors on real-world banking data. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:410:" <a href="http://arxiv.org/find/q-fin/1/au:+Zhang_Z/0/1/0/all/0/1">Zheng Zhang</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Ji_Y/0/1/0/all/0/1">Yingsheng Ji</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Shen_J/0/1/0/all/0/1">Jiachen Shen</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Zhang_X/0/1/0/all/0/1">Xi Zhang</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Yang_G/0/1/0/all/0/1">Guangwen Yang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:18;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11850";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"Memory Efficient Invertible Neural Networks for 3D Photoacoustic Imaging. (arXiv:2204.11850v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11850";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:882:"<p>Photoacoustic imaging (PAI) can image high-resolution structures of clinical interest such as vascularity in cancerous tumor monitoring. When imaging human subjects, geometric restrictions force limited-view data retrieval causing imaging artifacts. Iterative physical model based approaches reduce artifacts but require prohibitively time consuming PDE solves. Machine learning (ML) has accelerated PAI by combining physical models and learned networks. However, the depth and overall power of ML methods is limited by memory intensive training. We propose using invertible neural networks (INNs) to alleviate memory pressure. We demonstrate INNs can image 3D photoacoustic volumes in the setting of limited-view, noisy, and subsampled data. The frugal constant memory usage of INNs enables us to train an arbitrary depth of learned layers on a consumer GPU with 16GB RAM. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:267:" <a href="http://arxiv.org/find/eess/1/au:+Orozco_R/0/1/0/all/0/1">Rafael Orozco</a>, <a href="http://arxiv.org/find/eess/1/au:+Louboutin_M/0/1/0/all/0/1">Mathias Louboutin</a>, <a href="http://arxiv.org/find/eess/1/au:+Herrmann_F/0/1/0/all/0/1">Felix J. Herrmann</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:19;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11852";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:72:"Graph Auto-Encoders for Network Completion. (arXiv:2204.11852v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11852";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:910:"<p>Completing a graph means inferring the missing nodes and edges from a partially observed network. Different methods have been proposed to solve this problem, but none of them employed the pattern similarity of parts of the graph. In this paper, we propose a model to use the learned pattern of connections from the observed part of the network based on the Graph Auto-Encoder technique and generalize these patterns to complete the whole graph. Our proposed model achieved competitive performance with less information needed. Empirical analysis of synthetic datasets and real-world datasets from different domains show that our model can complete the network with higher accuracy compared with baseline prediction models in most cases. Furthermore, we also studied the character of the model and found it is particularly suitable to complete a network that has more complex local connection patterns. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:312:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Zhang Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_R/0/1/0/all/0/1">Ruyi Tao</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_Y/0/1/0/all/0/1">Yongzai Tao</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jiang Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:20;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11853";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"Real or Virtual: A Video Conferencing Background Manipulation-Detection System. (arXiv:2204.11853v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11853";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1862:"<p>Recently, the popularity and wide use of the last-generation video conferencing technologies created an exponential growth in its market size. Such technology allows participants in different geographic regions to have a virtual face-to-face meeting. Additionally, it enables users to employ a virtual background to conceal their own environment due to privacy concerns or to reduce distractions, particularly in professional settings. Nevertheless, in scenarios where the users should not hide their actual locations, they may mislead other participants by claiming their virtual background as a real one. Therefore, it is crucial to develop tools and strategies to detect the authenticity of the considered virtual background. In this paper, we present a detection strategy to distinguish between real and virtual video conferencing user backgrounds. We demonstrate that our detector is robust against two attack scenarios. The first scenario considers the case where the detector is unaware about the attacks and inn the second scenario, we make the detector aware of the adversarial attacks, which we refer to Adversarial Multimedia Forensics (i.e, the forensically-edited frames are included in the training set). Given the lack of publicly available dataset of virtual and real backgrounds for video conferencing, we created our own dataset and made them publicly available [1]. Then, we demonstrate the robustness of our detector against different adversarial attacks that the adversary considers. Ultimately, our detector's performance is significant against the CRSPAM1372 [2] features, and post-processing operations such as geometric transformations with different quality factors that the attacker may choose. Moreover, our performance results shows that we can perfectly identify a real from a virtual background with an accuracy of 99.80%. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:506:" <a href="http://arxiv.org/find/cs/1/au:+Nowroozi_E/0/1/0/all/0/1">Ehsan Nowroozi</a>, <a href="http://arxiv.org/find/cs/1/au:+Mekdad_Y/0/1/0/all/0/1">Yassine Mekdad</a>, <a href="http://arxiv.org/find/cs/1/au:+Conti_M/0/1/0/all/0/1">Mauro Conti</a>, <a href="http://arxiv.org/find/cs/1/au:+Milani_S/0/1/0/all/0/1">Simone Milani</a>, <a href="http://arxiv.org/find/cs/1/au:+Uluagac_S/0/1/0/all/0/1">Selcuk Uluagac</a>, <a href="http://arxiv.org/find/cs/1/au:+Yanikoglu_B/0/1/0/all/0/1">Berrin Yanikoglu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:21;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"Discovering Gateway Ports in Maritime Using Temporal Graph Neural Network Port Classification. (arXiv:2204.11855v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11855";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1228:"<p>Vessel navigation is influenced by various factors, such as dynamic environmental factors that change over time or static features such as vessel type or depth of the ocean. These dynamic and static navigational factors impose limitations on vessels, such as long waiting times in regions outside the actual ports, and we call these waiting regions gateway ports. Identifying gateway ports and their associated features such as congestion and available utilities can enhance vessel navigation by planning on fuel optimization or saving time in cargo operation. In this paper, we propose a novel temporal graph neural network (TGNN) based port classification method to enable vessels to discover gateway ports efficiently, thus optimizing their operations. The proposed method processes vessel trajectory data to build dynamic graphs capturing spatio-temporal dependencies between a set of static and dynamic navigational features in the data, and it is evaluated in terms of port classification accuracy on a real-world data set collected from ten vessels operating in Halifax, NS, Canada. The experimental results indicate that our TGNN-based port classification method provides an f-score of 95% in classifying ports. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:337:" <a href="http://arxiv.org/find/cs/1/au:+Altan_D/0/1/0/all/0/1">Dogan Altan</a>, <a href="http://arxiv.org/find/cs/1/au:+Etemad_M/0/1/0/all/0/1">Mohammad Etemad</a>, <a href="http://arxiv.org/find/cs/1/au:+Marijan_D/0/1/0/all/0/1">Dusica Marijan</a>, <a href="http://arxiv.org/find/cs/1/au:+Kholodna_T/0/1/0/all/0/1">Tetyana Kholodna</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:22;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11857";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"GDGRU-DTA: Predicting Drug-Target Binding Affinity Based on GNN and Double GRU. (arXiv:2204.11857v1 [q-bio.QM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11857";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1013:"<p>The work for predicting drug and target affinity(DTA) is crucial for drug development and repurposing. In this work, we propose a novel method called GDGRU-DTA to predict the binding affinity between drugs and targets, which is based on GraphDTA, but we consider that protein sequences are long sequences, so simple CNN cannot capture the context dependencies in protein sequences well. Therefore, we improve it by interpreting the protein sequences as time series and extracting their features using Gate Recurrent Unit(GRU) and Bidirectional Gate Recurrent Unit(BiGRU). For the drug, our processing method is similar to that of GraphDTA, but uses two different graph convolution methods. Subsequently, the representation of drugs and proteins are concatenated for final prediction. We evaluate the proposed model on two benchmark datasets. Our model outperforms some state-of-the-art deep learning methods, and the results demonstrate the feasibility and excellent feature capture ability of our model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:331:" <a href="http://arxiv.org/find/q-bio/1/au:+Zhijian_L/0/1/0/all/0/1">Lyu Zhijian</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Shaohua_J/0/1/0/all/0/1">Jiang Shaohua</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Yigao_L/0/1/0/all/0/1">Liang Yigao</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Min_G/0/1/0/all/0/1">Gao Min</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:23;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11858";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:72:"Data Uncertainty without Prediction Models. (arXiv:2204.11858v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11858";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:761:"<p>Data acquisition processes for machine learning are often costly. To construct a high-performance prediction model with fewer data, a degree of difficulty in prediction is often deployed as the acquisition function in adding a new data point. The degree of difficulty is referred to as uncertainty in prediction models. We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models. We estimated uncertainty using distances and class impurities around the location, and compared it with several methods based on prediction models for uncertainty estimation by active learning tasks. We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:159:" <a href="http://arxiv.org/find/cs/1/au:+Park_B/0/1/0/all/0/1">Bongjoon Park</a>, <a href="http://arxiv.org/find/cs/1/au:+Koh_E/0/1/0/all/0/1">Eunkyung Koh</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:24;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11859";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:59:"Mapping Research Trajectories. (arXiv:2204.11859v1 [cs.DL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11859";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1933:"<p>Steadily growing amounts of information, such as annually published scientific papers, have become so large that they elude an extensive manual analysis. Hence, to maintain an overview, automated methods for the mapping and visualization of knowledge domains are necessary and important, e.g., for scientific decision makers. Of particular interest in this field is the development of research topics of different entities (e.g., scientific authors and venues) over time. However, existing approaches for their analysis are only suitable for single entity types, such as venues, and they often do not capture the research topics or the time dimension in an easily interpretable manner. </p> <p>Hence, we propose a principled approach for \emph{mapping research trajectories}, which is applicable to all kinds of scientific entities that can be represented by sets of published papers. For this, we transfer ideas and principles from the geographic visualization domain, specifically trajectory maps and interactive geographic maps. Our visualizations depict the research topics of entities over time in a straightforward interpr. manner. They can be navigated by the user intuitively and restricted to specific elements of interest. The maps are derived from a corpus of research publications (i.e., titles and abstracts) through a combination of unsupervised machine learning methods. </p> <p>In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning. We observe that our trajectory visualizations of 30 top machine learning venues and 1000 major authors in this field are well interpretable and are consistent with background knowledge drawn from the entities' publications. Next to producing interactive, interpr. visualizations supporting different kinds of analyses, our computed trajectories are suitable for trajectory mining applications in the future. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:261:" <a href="http://arxiv.org/find/cs/1/au:+Schafermeier_B/0/1/0/all/0/1">Bastian Schäfermeier</a>, <a href="http://arxiv.org/find/cs/1/au:+Stumme_G/0/1/0/all/0/1">Gerd Stumme</a>, <a href="http://arxiv.org/find/cs/1/au:+Hanika_T/0/1/0/all/0/1">Tom Hanika</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:25;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11860";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Multi-objective Pointer Network for Combinatorial Optimization. (arXiv:2204.11860v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11860";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1575:"<p>Multi-objective combinatorial optimization problems (MOCOPs), one type of complex optimization problems, widely exist in various real applications. Although meta-heuristics have been successfully applied to address MOCOPs, the calculation time is often much longer. Recently, a number of deep reinforcement learning (DRL) methods have been proposed to generate approximate optimal solutions to the combinatorial optimization problems. However, the existing studies on DRL have seldom focused on MOCOPs. This study proposes a single-model deep reinforcement learning framework, called multi-objective Pointer Network (MOPN), where the input structure of PN is effectively improved so that the single PN is capable of solving MOCOPs. In addition, two training strategies, based on representative model and transfer learning, respectively, are proposed to further enhance the performance of MOPN in different application scenarios. Moreover, compared to classical meta-heuristics, MOPN only consumes much less time on forward propagation to obtain the Pareto front. Meanwhile, MOPN is insensitive to problem scale, meaning that a trained MOPN is able to address MOCOPs with different scales. To verify the performance of MOPN, extensive experiments are conducted on three multi-objective traveling salesman problems, in comparison with one state-of-the-art model DRL-MOA and three classical multi-objective meta-heuristics. Experimental results demonstrate that the proposed model outperforms all the comparative methods with only 20\% to 40\% training time of DRL-MOA. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:310:" <a href="http://arxiv.org/find/cs/1/au:+Gao_L/0/1/0/all/0/1">Le-yang Gao</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_R/0/1/0/all/0/1">Rui Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_C/0/1/0/all/0/1">Chuang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_Z/0/1/0/all/0/1">Zhao-hong Jia</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:26;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11878";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"Comeback Kid: Resilience for Mixed-Critical Wireless Network Resource Management. (arXiv:2204.11878v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11878";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1756:"<p>The future sixth generation (6G) of communication systems is envisioned to provide numerous applications in safety-critical contexts, e.g., driverless traffic, modular industry, and smart cities, which require outstanding performance, high reliability and fault tolerance, as well as autonomy. Ensuring criticality awareness for diverse functional safety applications and providing fault tolerance in an autonomous manner are essential for future 6G systems. Therefore, this paper proposes jointly employing the concepts of resilience and mixed criticality. In this contribution, we conduct physical layer resource management in cloud-based networks under the rate-splitting paradigm, which is a promising factor towards achieving high resilience. We recapitulate the concepts individually, outline a joint metric to measure the criticality-aware resilience, and verify its merits in a case study. We, thereby, formulate a non-convex optimization problem, derive an efficient iterative algorithm, propose four resilience mechanisms differing in quality and time of adaption, and conduct numerical simulations. Towards this end, a highly autonomous rate-splitting-enabled physical layer resource management algorithm for future 6G networks respecting mixed-critical QoS levels and providing high levels of resilience is proposed. Results emphasize the appreciable improvements of implementing mixed criticality-aware resilience under channel outages and strict quality of service (QoS) demands. The rate-splitting paradigm is particularly shown to overcome state-of-the-art interference management techniques, and the resilience and throughput adaption over consecutive outage events reveals the proposed schemes suitability for future 6G networks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:338:" <a href="http://arxiv.org/find/cs/1/au:+Reifert_R/0/1/0/all/0/1">Robert-Jeron Reifert</a>, <a href="http://arxiv.org/find/cs/1/au:+Roth_S/0/1/0/all/0/1">Stefan Roth</a>, <a href="http://arxiv.org/find/cs/1/au:+Ahmad_A/0/1/0/all/0/1">Alaa Alameer Ahmad</a>, <a href="http://arxiv.org/find/cs/1/au:+Sezgin_A/0/1/0/all/0/1">Aydin Sezgin</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:27;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11887";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Evolutionary latent space search for driving human portrait generation. (arXiv:2204.11887v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11887";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:716:"<p>This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:269:" <a href="http://arxiv.org/find/cs/1/au:+Machin_B/0/1/0/all/0/1">Benjamín Machín</a>, <a href="http://arxiv.org/find/cs/1/au:+Nesmachnow_S/0/1/0/all/0/1">Sergio Nesmachnow</a>, <a href="http://arxiv.org/find/cs/1/au:+Toutouh_J/0/1/0/all/0/1">Jamal Toutouh</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:28;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11891";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-Transfer. (arXiv:2204.11891v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11891";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1881:"<p>Using synthetic data for training neural networks that achieve good performance on real-world data is an important task as it has the potential to reduce the need for costly data annotation. Yet, a network that is trained on synthetic data alone does not perform well on real data due to the domain gap between the two. Reducing this gap, also known as domain adaptation, has been widely studied in recent years. In the unsupervised domain adaptation (UDA) framework, unlabeled real data is used during training with labeled synthetic data to obtain a neural network that performs well on real data. In this work, we focus on image data. For the semantic segmentation task, it has been shown that performing image-to-image translation from source to target, and then training a network for segmentation on source annotations - leads to poor results. Therefore a joint training of both is essential, which has been a common practice in many techniques. Yet, closing the large domain gap between the source and the target by directly performing the adaptation between the two is challenging. In this work, we propose a novel two-stage framework for improving domain adaptation techniques. In the first step, we progressively train a multi-scale neural network to perform an initial transfer between the source data to the target data. We denote the new transformed data as "Source in Target" (SiT). Then, we use the generated SiT data as the input to any standard UDA approach. This new data has a reduced domain gap from the desired target domain, and the applied UDA approach further closes the gap. We demonstrate the improvement achieved by our framework with two state-of-the-art methods for semantic segmentation, DAFormer and ProDA, on two UDA tasks, GTA5 to Cityscapes and Synthia to Cityscapes. Code and state-of-the-art checkpoints of ProCST+DAFormer are provided. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:259:" <a href="http://arxiv.org/find/cs/1/au:+Ettedgui_S/0/1/0/all/0/1">Shahaf Ettedgui</a>, <a href="http://arxiv.org/find/cs/1/au:+Abu_Hussein_S/0/1/0/all/0/1">Shady Abu-Hussein</a>, <a href="http://arxiv.org/find/cs/1/au:+Giryes_R/0/1/0/all/0/1">Raja Giryes</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:29;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11894";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"Properly learning monotone functions via local reconstruction. (arXiv:2204.11894v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11894";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1299:"<p>We give a $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon [BT96] and an information-theoretic lower bound of [BCO+15]. Prior to this work, no proper learning algorithm with running time smaller than $2^{\Omega(n)}$ was known to exist. </p> <p>The core of our proper learner is a local computation algorithm for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari and Uitto [GU19], which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of [RTVX11, ARVX11]. The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\varepsilon/3$-close to monotone from those that are $\varepsilon$-far. Previous tolerant testers for the Boolean cube only distinguished between $\varepsilon/\Omega(\sqrt{n})$-close and $\varepsilon$-far. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:253:" <a href="http://arxiv.org/find/cs/1/au:+Lange_J/0/1/0/all/0/1">Jane Lange</a>, <a href="http://arxiv.org/find/cs/1/au:+Rubinfeld_R/0/1/0/all/0/1">Ronitt Rubinfeld</a>, <a href="http://arxiv.org/find/cs/1/au:+Vasilyan_A/0/1/0/all/0/1">Arsen Vasilyan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:30;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11897";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:52:"Reinforcement Teaching. (arXiv:2204.11897v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11897";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1188:"<p>We propose Reinforcement Teaching: a framework for meta-learning in which a teaching policy is learned, through reinforcement, to control a student's learning process. The student's learning process is modelled as a Markov reward process and the teacher, with its action-space, interacts with the induced Markov decision process. We show that, for many learning processes, the student's learnable parameters form a Markov state. To avoid having the teacher learn directly from parameters, we propose the Parameter Embedder that learns a representation of a student's state from its input/output behaviour. Next, we use learning progress to shape the teacher's reward towards maximizing the student's performance. To demonstrate the generality of Reinforcement Teaching, we conducted experiments in which a teacher learns to significantly improve supervised and reinforcement learners by using a combination of learning progress reward and a Parameter Embedded state. These results show that Reinforcement Teaching is not only an expressive framework capable of unifying different approaches, but also provides meta-learning with the plethora of tools from reinforcement learning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:431:" <a href="http://arxiv.org/find/cs/1/au:+Lewandowski_A/0/1/0/all/0/1">Alex Lewandowski</a>, <a href="http://arxiv.org/find/cs/1/au:+Muslimani_C/0/1/0/all/0/1">Calarina Muslimani</a>, <a href="http://arxiv.org/find/cs/1/au:+Taylor_M/0/1/0/all/0/1">Matthew E. Taylor</a>, <a href="http://arxiv.org/find/cs/1/au:+Luo_J/0/1/0/all/0/1">Jun Luo</a>, <a href="http://arxiv.org/find/cs/1/au:+Schuurmans_D/0/1/0/all/0/1">Dale Schuurmans</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:31;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11902";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"Learning First-Order Symbolic Planning Representations That Are Grounded. (arXiv:2204.11902v1 [cs.AI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11902";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1209:"<p>Two main approaches have been developed for learning first-order planning (action) models from unstructured data: combinatorial approaches that yield crisp action schemas from the structure of the state space, and deep learning approaches that produce action schemas from states represented by images. A benefit of the former approach is that the learned action schemas are similar to those that can be written by hand; a benefit of the latter is that the learned representations (predicates) are grounded on the images, and as a result, new instances can be given in terms of images. In this work, we develop a new formulation for learning crisp first-order planning models that are grounded on parsed images, a step to combine the benefits of the two approaches. Parsed images are assumed to be given in a simple O2D language (objects in 2D) that involves a small number of unary and binary predicates like "left", "above", "shape", etc. After learning, new planning instances can be given in terms of pairs of parsed images, one for the initial situation and the other for the goal. Learning and planning experiments are reported for several domains including Blocks, Sokoban, IPC Grid, and Hanoi. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:266:" <a href="http://arxiv.org/find/cs/1/au:+Liberman_A/0/1/0/all/0/1">Andrés Occhipinti Liberman</a>, <a href="http://arxiv.org/find/cs/1/au:+Geffner_H/0/1/0/all/0/1">Hector Geffner</a>, <a href="http://arxiv.org/find/cs/1/au:+Bonet_B/0/1/0/all/0/1">Blai Bonet</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:32;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11908";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"Comparison study of the combination of the SPSA algorithm and the PSO algorithm. (arXiv:2204.11908v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11908";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1581:"<p>Particle swarm optimization (PSO) is attracting an ever-growing attention and more than ever it has found many application areas for many challenging optimization problems. It is, however, a known fact that PSO has a severe drawback in the update of its global best (gbest) particle, which has a crucial role of guiding the rest of the swarm. In this paper, we propose three efficient solutions to remedy this problem using the SPSA Algorithm. In the first approach, gbest is updated with respect to a global estimation of the gradient and can avoid getting trapped into a local optimum. The second approach is based on the formation of an alternative or artificial global best particle, the so-called aGB, which can replace the native gbest particle for a better guidance, the decision of which is held by a fair competition between the two. The third approach is based on the update of the swarm particle. For this purpose we use simultaneous perturbation stochastic approximation (SPSA) for its low cost. Since SPSA is applied only to the gbest (not to the entire swarm) or to the entire swarm, both approaches result thus in a negligible overhead cost for the entire PSO process. Both approaches are shown to significantly improve the performance of PSO over a wide range of non-linear functions, especially if SPSA and PSO parameters are well selected to fit the problem at hand. As in the basic PSO application, experimental results show that the proposed approaches significantly improved the quality of the Optimization process as measured by a statistic analysis. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:255:" <a href="http://arxiv.org/find/eess/1/au:+Ngansop_B/0/1/0/all/0/1">Bertrand Ngansop</a>, <a href="http://arxiv.org/find/eess/1/au:+Gotz_S/0/1/0/all/0/1">Stefan Götz</a>, <a href="http://arxiv.org/find/eess/1/au:+Eckl_M/0/1/0/all/0/1">Martin Eckl</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:33;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11909";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:130:"How can NLP Help Revitalize Endangered Languages? A Case Study and Roadmap for the Cherokee Language. (arXiv:2204.11909v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11909";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1394:"<p>More than 43% of the languages spoken in the world are endangered, and language loss currently occurs at an accelerated rate because of globalization and neocolonialism. Saving and revitalizing endangered languages has become very important for maintaining the cultural diversity on our planet. In this work, we focus on discussing how NLP can help revitalize endangered languages. We first suggest three principles that may help NLP practitioners to foster mutual understanding and collaboration with language communities, and we discuss three ways in which NLP can potentially assist in language education. We then take Cherokee, a severely-endangered Native American language, as a case study. After reviewing the language's history, linguistic features, and existing resources, we (in collaboration with Cherokee community members) arrive at a few meaningful ways NLP practitioners can collaborate with community partners. We suggest two approaches to enrich the Cherokee language's resources with machine-in-the-loop processing, and discuss several NLP tools that people from the Cherokee community have shown interest in. We hope that our work serves not only to inform the NLP community about Cherokee, but also to provide inspiration for future work on endangered languages in general. Our code and data will be open-sourced at https://github.com/ZhangShiyue/RevitalizeCherokee </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:238:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_S/0/1/0/all/0/1">Shiyue Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Frey_B/0/1/0/all/0/1">Ben Frey</a>, <a href="http://arxiv.org/find/cs/1/au:+Bansal_M/0/1/0/all/0/1">Mohit Bansal</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:34;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11910";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:160:"Integrating Reward Maximization and Population Estimation: Sequential Decision-Making for Internal Revenue Service Audit Selection. (arXiv:2204.11910v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11910";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1322:"<p>We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must select a batch of arms, each characterized by its own context, that would allow it to both maximize reward and maintain an accurate (ideally unbiased) population estimate of the reward. This setting is inherent to many public and private sector applications and often requires handling delayed feedback, small data, and distribution shifts. We demonstrate its importance on real data from the United States Internal Revenue Service (IRS). The IRS performs yearly audits of the tax base. Two of its most important objectives are to identify suspected misreporting and to estimate the "tax gap" - the global difference between the amount paid and true amount owed. We cast these two processes as a unified optimize-and-estimate structured bandit. We provide a novel mechanism for unbiased population estimation that achieves rewards comparable to baseline approaches. This approach has the potential to improve audit efficacy, while maintaining policy-relevant estimates of the tax gap. This has important social consequences given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that this problem setting is fertile ground for further research and we highlight its interesting challenges. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:665:" <a href="http://arxiv.org/find/cs/1/au:+Henderson_P/0/1/0/all/0/1">Peter Henderson</a>, <a href="http://arxiv.org/find/cs/1/au:+Chugg_B/0/1/0/all/0/1">Ben Chugg</a>, <a href="http://arxiv.org/find/cs/1/au:+Anderson_B/0/1/0/all/0/1">Brandon Anderson</a>, <a href="http://arxiv.org/find/cs/1/au:+Altenburger_K/0/1/0/all/0/1">Kristen Altenburger</a>, <a href="http://arxiv.org/find/cs/1/au:+Turk_A/0/1/0/all/0/1">Alex Turk</a>, <a href="http://arxiv.org/find/cs/1/au:+Guyton_J/0/1/0/all/0/1">John Guyton</a>, <a href="http://arxiv.org/find/cs/1/au:+Goldin_J/0/1/0/all/0/1">Jacob Goldin</a>, <a href="http://arxiv.org/find/cs/1/au:+Ho_D/0/1/0/all/0/1">Daniel E. Ho</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:35;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11911";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"DArch: Dental Arch Prior-assisted 3D Tooth Instance Segmentation. (arXiv:2204.11911v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11911";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1592:"<p>Automatic tooth instance segmentation on 3D dental models is a fundamental task for computer-aided orthodontic treatments. Existing learning-based methods rely heavily on expensive point-wise annotations. To alleviate this problem, we are the first to explore a low-cost annotation way for 3D tooth instance segmentation, i.e., labeling all tooth centroids and only a few teeth for each dental model. Regarding the challenge when only weak annotation is provided, we present a dental arch prior-assisted 3D tooth segmentation method, namely DArch. Our DArch consists of two stages, including tooth centroid detection and tooth instance segmentation. Accurately detecting the tooth centroids can help locate the individual tooth, thus benefiting the segmentation. Thus, our DArch proposes to leverage the dental arch prior to assist the detection. Specifically, we firstly propose a coarse-to-fine method to estimate the dental arch, in which the dental arch is initially generated by Bezier curve regression, and then a graph-based convolutional network (GCN) is trained to refine it. With the estimated dental arch, we then propose a novel Arch-aware Point Sampling (APS) method to assist the tooth centroid proposal generation. Meantime, a segmentor is independently trained using a patch-based training strategy, aiming to segment a tooth instance from a 3D patch centered at the tooth centroid. Experimental results on $4,773$ dental models have shown our DArch can accurately segment each tooth of a dental model, and its performance is superior to the state-of-the-art methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:467:" <a href="http://arxiv.org/find/cs/1/au:+Qiu_L/0/1/0/all/0/1">Liangdong Qiu</a>, <a href="http://arxiv.org/find/cs/1/au:+Ye_C/0/1/0/all/0/1">Chongjie Ye</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_P/0/1/0/all/0/1">Pei Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yunbi Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_X/0/1/0/all/0/1">Xiaoguang Han</a>, <a href="http://arxiv.org/find/cs/1/au:+Cui_S/0/1/0/all/0/1">Shuguang Cui</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:36;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11914";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:80:"Generating and Visualizing Trace Link Explanations. (arXiv:2204.11914v1 [cs.SE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11914";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1637:"<p>Recent breakthroughs in deep-learning (DL) approaches have resulted in the dynamic generation of trace links that are far more accurate than was previously possible. However, DL-generated links lack clear explanations, and therefore non-experts in the domain can find it difficult to understand the underlying semantics of the link, making it hard for them to evaluate the link's correctness or suitability for a specific software engineering task. In this paper we present a novel NLP pipeline for generating and visualizing trace link explanations. Our approach identifies domain-specific concepts, retrieves a corpus of concept-related sentences, mines concept definitions and usage examples, and identifies relations between cross-artifact concepts in order to explain the links. It applies a post-processing step to prioritize the most likely acronyms and definitions and to eliminate non-relevant ones. We evaluate our approach using project artifacts from three different domains of interstellar telescopes, positive train control, and electronic health-care systems, and then report coverage, correctness, and potential utility of the generated definitions. We design and utilize an explanation interface which leverages concept definitions and relations to visualize and explain trace link rationales, and we report results from a user study that was conducted to evaluate the effectiveness of the explanation interface. Results show that the explanations presented in the interface helped non-experts to understand the underlying semantics of a trace link and improved their ability to vet the correctness of the link. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:420:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yalin Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Lin_J/0/1/0/all/0/1">Jinfeng Lin</a>, <a href="http://arxiv.org/find/cs/1/au:+Anuyah_O/0/1/0/all/0/1">Oghenemaro Anuyah</a>, <a href="http://arxiv.org/find/cs/1/au:+Metoyer_R/0/1/0/all/0/1">Ronald Metoyer</a>, <a href="http://arxiv.org/find/cs/1/au:+Cleland_Huang_J/0/1/0/all/0/1">Jane Cleland-Huang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:37;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11918";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items. (arXiv:2204.11918v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11918";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:845:"<p>Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source collection of over one thousand 3D-scanned household items released under a Creative Commons license; these models are preprocessed for use in Ignition Gazebo and the Bullet simulation platforms, but are easily adaptable to other simulators. We describe our object scanning and curation pipeline, then provide statistics about the contents of the dataset and its usage. We hope that the diversity, quality, and flexibility of Google Scanned Objects will lead to advances in interactive simulation, synthetic perception, and robotic learning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:674:" <a href="http://arxiv.org/find/cs/1/au:+Downs_L/0/1/0/all/0/1">Laura Downs</a>, <a href="http://arxiv.org/find/cs/1/au:+Francis_A/0/1/0/all/0/1">Anthony Francis</a>, <a href="http://arxiv.org/find/cs/1/au:+Koenig_N/0/1/0/all/0/1">Nate Koenig</a>, <a href="http://arxiv.org/find/cs/1/au:+Kinman_B/0/1/0/all/0/1">Brandon Kinman</a>, <a href="http://arxiv.org/find/cs/1/au:+Hickman_R/0/1/0/all/0/1">Ryan Hickman</a>, <a href="http://arxiv.org/find/cs/1/au:+Reymann_K/0/1/0/all/0/1">Krista Reymann</a>, <a href="http://arxiv.org/find/cs/1/au:+McHugh_T/0/1/0/all/0/1">Thomas B. McHugh</a>, <a href="http://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1">Vincent Vanhoucke</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:38;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11920";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Quo Vadis, Optical Network Architecture? Towards an Optical-processing-enabled Paradigm. (arXiv:2204.11920v1 [cs.NI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11920";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1929:"<p>Among various aspects in optical network architectures, handling transit traffic at intermediate nodes represents a defining characteristic for classification. In this context, the transition from the first generation of optical-electrical-optical (O-E-O) mode to the second generation of optical-bypass marked a paradigm shift in redesigning optical transport networks towards greater network efficiency. Optical-bypass operation has then become the \textit{de facto} approach adopted by the majority of carriers in both metro and backbone networks in the last two decades and has remained basically unchanged. However, in optical-bypass network, the fact that in-transit lightpaths crossing a common intermediate node must be separated in either time, frequency or spatial domain to avoid adversarial interference appears to be a critical shortcoming as the interaction of such lightpaths in optical domain may result in efficient computing and/or signal processing operations for saving spectral resources. Inspired by the accelerated progresses in optical signal processing technologies and the integration of computing and communications, we introduce in this paper a new architectural paradigm for future optical networks and highlight how this new architecture has the potential to shatter the \textit{status quo}. Indeed, our proposal is centered on exploiting the superposition of in-transit lightpaths at intermediate nodes to generate more spectrally efficient lightpaths and how to harness this opportunity from network design perspectives. We present two case studies featuring optical aggregation and optical XOR encoding to demonstrate the merit of optical-processing-enabled operation compared to its counterpart, optical-bypass. Numerical results on realistic network typologies are provided, revealing that a spectral saving up to $30\%$ could be achieved thanks to adopting optical-processing network. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:79:" <a href="http://arxiv.org/find/cs/1/au:+Hai_D/0/1/0/all/0/1">Dao Thanh Hai</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:39;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11922";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:153:"Super-Prompting: Utilizing Model-Independent Contextual Data to Reduce Data Annotation Required in Visual Commonsense Tasks. (arXiv:2204.11922v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11922";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1284:"<p>Pre-trained language models have shown excellent results in few-shot learning scenarios using in-context learning. Although it is impressive, the size of language models can be prohibitive to make them usable in on-device applications, such as sensors or smartphones. With smaller language models, task-specific data annotation is needed to fine-tune the language model for a specific purpose. However, data annotation can have a substantial financial and time burden for small research groups, startups, and even companies. In this paper, we analyze different prompt-based fine-tuning techniques to improve results on both language and multimodal causal transformer models. To evaluate our results, we use a dataset focusing on visual commonsense reasoning in time. Our results show that by simple model-agnostic prompt-based fine-tuning, comparable results can be reached by only using 35%-40% of the fine-tuning training dataset. The proposed approaches result in significant time and financial savings. As the proposed methods make minimal architectural assumptions, other researchers can use the results in their transformer models with minimal adaptations. We plan to release the source code freely to make it easier for the community to use and contribute to our work. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:170:" <a href="http://arxiv.org/find/cs/1/au:+Rezaei_N/0/1/0/all/0/1">Navid Rezaei</a>, <a href="http://arxiv.org/find/cs/1/au:+Reformat_M/0/1/0/all/0/1">Marek Z. Reformat</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:40;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11923";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Sparse-Dense Motion Modelling and Tracking for Manipulation without Prior Object Models. (arXiv:2204.11923v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11923";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:795:"<p>This work presents an approach for modelling and tracking previously unseen objects for robotic grasping tasks. Using the motion of objects in a scene, our approach segments rigid entities from the scene and continuously tracks them to create a dense and sparse model of the object and the environment. While the dense tracking enables interaction with these models, the sparse tracking makes this robust against fast movements and allows to redetect already modelled objects. </p> <p>The evaluation on a dual-arm grasping task demonstrates that our approach 1) enables a robot to detect new objects online without a prior model and to grasp these objects using only a simple parameterisable geometric representation, and 2) is much more robust compared to the state of the art methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:332:" <a href="http://arxiv.org/find/cs/1/au:+Rauch_C/0/1/0/all/0/1">Christian Rauch</a>, <a href="http://arxiv.org/find/cs/1/au:+Long_R/0/1/0/all/0/1">Ran Long</a>, <a href="http://arxiv.org/find/cs/1/au:+Ivan_V/0/1/0/all/0/1">Vladimir Ivan</a>, <a href="http://arxiv.org/find/cs/1/au:+Vijayakumar_S/0/1/0/all/0/1">Sethu Vijayakumar</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:41;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11924";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:159:"Learning High-Dimensional McKean-Vlasov Forward-Backward Stochastic Differential Equations with General Distribution Dependence. (arXiv:2204.11924v1 [math.OC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11924";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1669:"<p>One of the core problems in mean-field control and mean-field games is to solve the corresponding McKean-Vlasov forward-backward stochastic differential equations (MV-FBSDEs). Most existing methods are tailored to special cases in which the mean-field interaction only depends on expectation or other moments and thus inadequate to solve problems when the mean-field interaction has full distribution dependence. In this paper, we propose a novel deep learning method for computing MV-FBSDEs with a general form of mean-field interactions. Specifically, built on fictitious play, we recast the problem into repeatedly solving standard FBSDEs with explicit coefficient functions. These coefficient functions are used to approximate the MV-FBSDEs' model coefficients with full distribution dependence, and are updated by solving another supervising learning problem using training data simulated from the last iteration's FBSDE solutions. We use deep neural networks to solve standard BSDEs and approximate coefficient functions in order to solve high-dimensional MV-FBSDEs. Under proper assumptions on the learned functions, we prove that the convergence of the proposed method is free of the curse of dimensionality (CoD) by using the generalized maximum mean discrepancy metric previously developed in [Han, Hu and Long, <a href="/abs/2104.12036">arXiv:2104.12036</a>]. The proved theorem shows the advantage of the method in high dimensions. We present the numerical performance in high-dimensional MV-FBSDE problems, including a mean-field game example of the well-known Cucker-Smale model whose cost depends on the full distribution of the forward process. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:236:" <a href="http://arxiv.org/find/math/1/au:+Han_J/0/1/0/all/0/1">Jiequn Han</a>, <a href="http://arxiv.org/find/math/1/au:+Hu_R/0/1/0/all/0/1">Ruimeng Hu</a>, <a href="http://arxiv.org/find/math/1/au:+Long_J/0/1/0/all/0/1">Jihao Long</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:42;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11926";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Pursuit-Evasion in Graphs: Zombies, Lazy Zombies and a Survivor. (arXiv:2204.11926v1 [math.CO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11926";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1433:"<p>We study zombies and survivor, a variant of the game of cops and robber on graphs. In this variant, the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The zombies are restricted, on their turn, to always follow an edge of a shortest path towards the survivor. Let $z(G)$ be the smallest number of zombies required to catch the survivor on a graph $G$ with $n$ vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that $z(G) = \Theta(n)$. We also show that there exist maximum-degree-$3$ outerplanar graphs such that $z(G) = \Omega\left(n/\log(n)\right)$. </p> <p>Let $z_L(G)$ be the smallest number of lazy zombies (zombies that can stay still on their turn) required to catch the survivor on a graph $G$. We establish that lazy zombies are more powerful than normal zombies but less powerful than cops. We prove that $z_L(G) = 2$ for connected outerplanar graphs. We show that $z_L(G)\leq k$ for connected graphs with treedepth $k$. This result implies that $z_L(G)$ is at most $(k+1)\log n$ for connected graphs with treewidth $k$, $O(\sqrt{n})$ for connected planar graphs, $O(\sqrt{gn})$ for connected graphs with genus $g$ and $O(h\sqrt{hn})$ for connected graphs with any excluded $h$-vertex minor. Our results on lazy zombies still hold when an adversary chooses the initial positions of the zombies. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:262:" <a href="http://arxiv.org/find/math/1/au:+Bose_P/0/1/0/all/0/1">Prosenjit Bose</a>, <a href="http://arxiv.org/find/math/1/au:+Carufel_J/0/1/0/all/0/1">Jean-Lou De Carufel</a>, <a href="http://arxiv.org/find/math/1/au:+Shermer_T/0/1/0/all/0/1">Thomas Shermer</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:43;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11927";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"Fractional Graph Coloring for Functional Compression with Side Information. (arXiv:2204.11927v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11927";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1240:"<p>We describe a rational approach to reduce the computational and communication complexities of lossless point-to-point compression for computation with side information. The traditional method relies on building a characteristic graph with vertices representing the source symbols and with edges that assign a source symbol to a collection of independent sets to be distinguished for the exact recovery of the function. Our approach uses fractional coloring for a b-fold coloring of characteristic graphs to provide a linear programming relaxation to the traditional coloring method and achieves coding at a fine-grained granularity. We derive the fundamental lower bound for compression, given by the fractional characteristic graph entropy, through generalizing the notion of K\"orner's graph entropy. We demonstrate the coding gains of fractional coloring over traditional coloring via a computation example. We conjecture that the integrality gap between fractional coloring and traditional coloring approaches the smallest b that attains the fractional chromatic number to losslessly represent the independent sets for a given characteristic graph, up to a linear scaling which is a function of the fractional chromatic number. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:79:" <a href="http://arxiv.org/find/cs/1/au:+Malak_D/0/1/0/all/0/1">Derya Malak</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:44;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11929";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:81:"Temporal Relevance Analysis for Video Action Models. (arXiv:2204.11929v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11929";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:890:"<p>In this paper, we provide a deep analysis of temporal modeling for action recognition, an important but underexplored problem in the literature. We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models based on layer-wise relevance propagation. We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected by various factors such as dataset, network architecture, and input frames. With this, we further study some important questions for action recognition that lead to interesting findings. Our analysis shows that there is no strong correlation between temporal relevance and model performance; and action models tend to capture local temporal information, but less long-range dependencies. Our codes and models will be publicly available. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:563:" <a href="http://arxiv.org/find/cs/1/au:+Fan_Q/0/1/0/all/0/1">Quanfu Fan</a>, <a href="http://arxiv.org/find/cs/1/au:+Kim_D/0/1/0/all/0/1">Donghyun Kim</a>, <a href="http://arxiv.org/find/cs/1/au:+Chun-Fu/0/1/0/all/0/1">Chun-Fu</a> (Richard) <a href="http://arxiv.org/find/cs/1/au:+Chen/0/1/0/all/0/1">Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Sclaroff_S/0/1/0/all/0/1">Stan Sclaroff</a>, <a href="http://arxiv.org/find/cs/1/au:+Saenko_K/0/1/0/all/0/1">Kate Saenko</a>, <a href="http://arxiv.org/find/cs/1/au:+Bargal_S/0/1/0/all/0/1">Sarah Adel Bargal</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:45;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11933";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:148:"Cleanformer: A microphone array configuration-invariant, streaming, multichannel neural enhancement frontend for ASR. (arXiv:2204.11933v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11933";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1361:"<p>This work introduces the Cleanformer, a streaming multichannel neural based enhancement frontend for automatic speech recognition (ASR). This model has a conformer-based architecture which takes as inputs a single channel each of raw and enhanced signals, and uses self-attention to derive a time-frequency mask. The enhanced input is generated by a multichannel adaptive noise cancellation algorithm known as Speech Cleaner, which makes use of noise context to derive its filter taps. The time-frequency mask is applied to the noisy input to produce enhanced output features for ASR. Detailed evaluations are presented with simulated and re-recorded datasets in speech-based and non-speech-based noise that show significant reduction in word error rate (WER) when using a large-scale state-of-the-art ASR model. It also will be shown to significantly outperform enhancement using a beamformer with ideal steering. The enhancement model is agnostic of the number of microphones and array configuration and, therefore, can be used with different microphone arrays without the need for retraining. It is demonstrated that performance improves with more microphones, up to 4, with each additional microphone providing a smaller marginal benefit. Specifically, for an SNR of -6dB, relative WER improvements of about 80\% are shown in both noise conditions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:269:" <a href="http://arxiv.org/find/eess/1/au:+Caroselli_J/0/1/0/all/0/1">Joseph Caroselli</a>, <a href="http://arxiv.org/find/eess/1/au:+Naranayan_A/0/1/0/all/0/1">Arun Naranayan</a>, <a href="http://arxiv.org/find/eess/1/au:+OMalley_T/0/1/0/all/0/1">Tom O'Malley</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:46;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11934";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"On-demand compute reduction with stochastic wav2vec 2.0. (arXiv:2204.11934v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11934";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1072:"<p>Squeeze and Efficient Wav2vec (SEW) is a recently proposed architecture that squeezes the input to the transformer encoder for compute efficient pre-training and inference with wav2vec 2.0 (W2V2) models. In this work, we propose stochastic compression for on-demand compute reduction for W2V2 models. As opposed to using a fixed squeeze factor, we sample it uniformly during training. We further introduce query and key-value pooling mechanisms that can be applied to each transformer layer for further compression. Our results for models pre-trained on 960h Librispeech dataset and fine-tuned on 10h of transcribed data show that using the same stochastic model, we get a smooth trade-off between word error rate (WER) and inference time with only marginal WER degradation compared to the W2V2 and SEW models trained for a specific setting. We further show that we can fine-tune the same stochastically pre-trained model to a specific configuration to recover the WER difference resulting in significant computational savings on pre-training models from scratch. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:322:" <a href="http://arxiv.org/find/cs/1/au:+Vyas_A/0/1/0/all/0/1">Apoorv Vyas</a>, <a href="http://arxiv.org/find/cs/1/au:+Hsu_W/0/1/0/all/0/1">Wei-Ning Hsu</a>, <a href="http://arxiv.org/find/cs/1/au:+Auli_M/0/1/0/all/0/1">Michael Auli</a>, <a href="http://arxiv.org/find/cs/1/au:+Baevski_A/0/1/0/all/0/1">Alexei Baevski</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:47;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11936";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:71:"Discrete-Continuous Smoothing and Mapping. (arXiv:2204.11936v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11936";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1692:"<p>We describe a general approach to smoothing and mapping with a class of discrete-continuous factor graphs commonly encountered in robotics applications. While there are openly available tools providing flexible and easy-to-use interfaces for specifying and solving optimization problems formulated in terms of either discrete or continuous graphical models, at present, no similarly general tools exist enabling the same functionality for hybrid discrete-continuous problems. We aim to address this problem. In particular, we provide a library, DC-SAM, extending existing tools for optimization problems defined in terms of factor graphs to the setting of discrete-continuous models. A key contribution of our work is a novel solver for efficiently recovering approximate solutions to discrete-continuous optimization problems. The key insight to our approach is that while joint inference over continuous and discrete state spaces is often hard, many commonly encountered discrete-continuous problems can naturally be split into a "discrete part" and a "continuous part" that can individually be solved easily. Leveraging this structure, we optimize discrete and continuous variables in an alternating fashion. In consequence, our proposed work enables straightforward representation of and approximate inference in discrete-continuous graphical models. We also provide a method to recover the uncertainty in estimates of both discrete and continuous variables. We demonstrate the versatility of our approach through its application to three distinct robot perception applications: point-cloud registration, robust pose graph optimization, and object-based mapping and localization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:326:" <a href="http://arxiv.org/find/cs/1/au:+Doherty_K/0/1/0/all/0/1">Kevin J. Doherty</a>, <a href="http://arxiv.org/find/cs/1/au:+Lu_Z/0/1/0/all/0/1">Ziqi Lu</a>, <a href="http://arxiv.org/find/cs/1/au:+Singh_K/0/1/0/all/0/1">Kurran Singh</a>, <a href="http://arxiv.org/find/cs/1/au:+Leonard_J/0/1/0/all/0/1">John J. Leonard</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:48;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11939";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"Robust Dual-Graph Regularized Moving Object Detection. (arXiv:2204.11939v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11939";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1291:"<p>Moving object detection and its associated background-foreground separation have been widely used in a lot of applications, including computer vision, transportation and surveillance. Due to the presence of the static background, a video can be naturally decomposed into a low-rank background and a sparse foreground. Many regularization techniques, such as matrix nuclear norm, have been imposed on the background. In the meanwhile, sparsity or smoothness based regularizations, such as total variation and $\ell_1$, can be imposed on the foreground. Moreover, graph Laplacians are further imposed to capture the complicated geometry of background images. Recently, weighted regularization techniques including the weighted nuclear norm regularization have been proposed in the image processing community to promote adaptive sparsity while achieving efficient performance. In this paper, we propose a robust dual-graph regularized moving object detection model based on the weighted nuclear norm regularization, which is solved by the alternating direction method of multipliers (ADMM). Numerical experiments on body movement data sets have demonstrated the effectiveness of this method in separating moving objects from background, and the great potential in robotic applications. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:307:" <a href="http://arxiv.org/find/cs/1/au:+Qin_J/0/1/0/all/0/1">Jing Qin</a>, <a href="http://arxiv.org/find/cs/1/au:+Shen_R/0/1/0/all/0/1">Ruilong Shen</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_R/0/1/0/all/0/1">Ruihan Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_B/0/1/0/all/0/1">Biyun Xie</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:49;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11942";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:73:"Meta-AF: Meta-Learning for Adaptive Filters. (arXiv:2204.11942v1 [cs.SD])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11942";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1681:"<p>Adaptive filtering algorithms are pervasive throughout modern society and have had a significant impact on a wide variety of domains including audio processing, telecommunications, biomedical sensing, astropyhysics and cosmology, seismology, and many more. Adaptive filters typically operate via specialized online, iterative optimization methods such as least-mean squares or recursive least squares and aim to process signals in unknown or nonstationary environments. Such algorithms, however, can be slow and laborious to develop, require domain expertise to create, and necessitate mathematical insight for improvement. In this work, we seek to go beyond the limits of human-derived adaptive filter algorithms and present a comprehensive framework for learning online, adaptive signal processing algorithms or update rules directly from data. To do so, we frame the development of adaptive filters as a meta-learning problem in the context of deep learning and use a form of self-supervision to learn online iterative update rules for adaptive filters. To demonstrate our approach, we focus on audio applications and systematically develop meta-learned adaptive filters for five canonical audio problems including system identification, acoustic echo cancellation, blind equalization, multi-channel dereverberation, and beamforming. For each application, we compare against common baselines and/or current state-of-the-art methods and show we can learn high-performing adaptive filters that operate in real-time and, in most cases, significantly out perform all past specially developed methods for each task using a single general-purpose configuration of our method. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:259:" <a href="http://arxiv.org/find/cs/1/au:+Casebeer_J/0/1/0/all/0/1">Jonah Casebeer</a>, <a href="http://arxiv.org/find/cs/1/au:+Bryan_N/0/1/0/all/0/1">Nicholas J. Bryan</a>, <a href="http://arxiv.org/find/cs/1/au:+Smaragdis_P/0/1/0/all/0/1">Paris Smaragdis</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:50;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11950";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:84:"Strategic Signaling for Utility Control in Audit Games. (arXiv:2204.11950v1 [cs.GT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11950";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1472:"<p>As an effective method to protect the daily access to sensitive data against malicious attacks, the audit mechanism has been widely deployed in various practical fields. In order to examine security vulnerabilities and prevent the leakage of sensitive data in a timely manner, the database logging system usually employs an online signaling scheme to issue an alert when suspicious access is detected. Defenders can audit alerts to reduce potential damage. This interaction process between a defender and an attacker can be modeled as an audit game. In previous studies, it was found that sending real-time signals in the audit game to warn visitors can improve the benefits of the defender. However, the previous approaches usually assume perfect information of the attacker, or simply concentrate on the utility of the defender. In this paper, we introduce a brand-new zero-determinant (ZD) strategy to study the sequential audit game with online signaling, which empowers the defender to unilaterally control the utility of visitors when accessing sensitive data. In addition, an optimization scheme based on the ZD strategy is designed to effectively maximize the utility difference between the defender and the attacker. Extensive simulation results show that our proposed scheme enhances the security management and control capabilities of the defender to better handle different access requests and safeguard the system security in a cost-efficient manner. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:231:" <a href="http://arxiv.org/find/cs/1/au:+Chen_J/0/1/0/all/0/1">Jianan Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Hu_Q/0/1/0/all/0/1">Qin Hu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_H/0/1/0/all/0/1">Honglu Jiang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:51;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11951";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:70:"Byzantine-Resilient Counting in Networks. (arXiv:2204.11951v1 [cs.DC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11951";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1923:"<p>We present two distributed algorithms for the {\em Byzantine counting problem}, which is concerned with estimating the size of a network in the presence of a large number of Byzantine nodes. </p> <p>In an $n$-node network ($n$ is unknown), our first algorithm, which is {\em deterministic}, finishes in $O(\log{n})$ rounds and is time-optimal. This algorithm can tolerate up to $O(n^{1 - \gamma})$ arbitrarily (adversarially) placed Byzantine nodes for any arbitrarily small (but fixed) positive constant $\gamma$. It outputs a (fixed) constant factor estimate of $\log{n}$ that would be known to all but $o(1)$ fraction of the good nodes. This algorithm works for \emph{any} bounded degree expander network. However, this algorithms assumes that good nodes can send arbitrarily large-sized messages in a round. </p> <p>Our second algorithm is {\em randomized} and most good nodes send only small-sized messages (Throughout this paper, a small-sized message is defined to be one that contains $O(\log{n})$ bits in addition to at most a constant number of node IDs.). This algorithm works in \emph{almost all} $d$-regular graphs. It tolerates up to $B(n) = n^{\frac{1}{2} - \xi}$ (note that $n$ and $B(n)$ are unknown to the algorithm) arbitrarily (adversarially) placed Byzantine nodes, where $\xi$ is any arbitrarily small (but fixed) positive constant. This algorithm takes $O(B(n)\log^2{n})$ rounds and outputs a (fixed) constant factor estimate of $\log{n}$ with probability at least $1 - o(1)$. The said estimate is known to most nodes, i.e., $\geq (1 - \beta)n$ nodes for any arbitrarily small (but fixed) positive constant $\beta$. </p> <p>To complement our algorithms, we also present an impossibility result that shows that it is impossible to estimate the network size with any reasonable approximation with any non-trivial probability of success if the network does not have sufficient vertex expansion. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:272:" <a href="http://arxiv.org/find/cs/1/au:+Chatterjee_S/0/1/0/all/0/1">Soumyottam Chatterjee</a>, <a href="http://arxiv.org/find/cs/1/au:+Pandurangan_G/0/1/0/all/0/1">Gopal Pandurangan</a>, <a href="http://arxiv.org/find/cs/1/au:+Robinson_P/0/1/0/all/0/1">Peter Robinson</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:52;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11953";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:147:"Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials. (arXiv:2204.11953v1 [cond-mat.mtrl-sci])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11953";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1778:"<p>Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at \url{www.materialsatlas.org/blmtinker}. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:618:" <a href="http://arxiv.org/find/cond-mat/1/au:+Wei_L/0/1/0/all/0/1">Lai Wei</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Li_Q/0/1/0/all/0/1">Qinyang Li</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Song_Y/0/1/0/all/0/1">Yuqi Song</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Stefanov_S/0/1/0/all/0/1">Stanislav Stefanov</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Siriwardane_E/0/1/0/all/0/1">Edirisuriya M. D. Siriwardane</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Chen_F/0/1/0/all/0/1">Fanglin Chen</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Hu_J/0/1/0/all/0/1">Jianjun Hu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:53;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11955";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:120:"The non-GRS properties for the twisted generalized Reed-Solomon code and its extended code. (arXiv:2204.11955v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11955";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:472:"<p>In 2017, Beelen et al. firstly introduced twisted generalized Reed-Solomon (in short, TGRS) codes, and constructed a large subclass of MDS TGRS codes. Later, they proved that TGRS code is non-GRS when the code rate is less than one half. In this letter, basing on the dual code of the TGRS code or the extended TGRS code, by using the Schur product, we prove that almost all of TGRS codes and extended TGRS codes are non-GRS when the code rate more than one half. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:155:" <a href="http://arxiv.org/find/cs/1/au:+Zhu_C/0/1/0/all/0/1">Canze Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Liao_Q/0/1/0/all/0/1">Qunying Liao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:54;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11956";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Spontaneous Emergence of Computation in Network Cascades. (arXiv:2204.11956v1 [physics.soc-ph])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11956";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:835:"<p>Neuronal network computation and computation by avalanche supporting networks are of interest to the fields of physics, computer science (computation theory as well as statistical or machine learning) and neuroscience. Here we show that computation of complex Boolean functions arises spontaneously in threshold networks as a function of connectivity and antagonism (inhibition), computed by logic automata (motifs) in the form of computational cascades. We explain the emergent inverse relationship between the computational complexity of the motifs and their rank-ordering by function probabilities due to motifs, and its relationship to symmetry in function space. We also show that the optimal fraction of inhibition observed here supports results in computational neuroscience, relating to optimal information processing. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:292:" <a href="http://arxiv.org/find/physics/1/au:+Wilkerson_G/0/1/0/all/0/1">Galen Wilkerson</a>, <a href="http://arxiv.org/find/physics/1/au:+Moschoyiannis_S/0/1/0/all/0/1">Sotiris Moschoyiannis</a>, <a href="http://arxiv.org/find/physics/1/au:+Jensen_H/0/1/0/all/0/1">Henrik Jeldtoft Jensen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:55;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11960";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:73:"The equivalence of GRS codes and EGRS codes. (arXiv:2204.11960v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11960";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:460:"<p>Generalized Reed-Solomon and extended generalized Reed-Solomon (abbreviation to GRS and EGRS) codes are the most well-known family of MDS codes with wide applications in coding theory and practice. Let $\mathbb{F}_q$ be the $q$ elements finite field, where $q$ is the power of a prime. For a linear code $\mathcal{C}$ over $\mathbb{F}_q$ with length $2\le n\le q$, we prove that $\mathcal{C}$ is a GRS code if and only if $\mathcal{C}$ is a EGRS code. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:75:" <a href="http://arxiv.org/find/cs/1/au:+Zhu_C/0/1/0/all/0/1">Canze Zhu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:56;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11964";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"SceneTrilogy: On Scene Sketches and its Relationship with Text and Photo. (arXiv:2204.11964v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11964";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1303:"<p>We for the first time extend multi-modal scene understanding to include that of free-hand scene sketches. This uniquely results in a trilogy of scene data modalities (sketch, text, and photo), where each offers unique perspectives for scene understanding, and together enable a series of novel scene-specific applications across discriminative (retrieval) and generative (captioning) tasks. Our key objective is to learn a common three-way embedding space that enables many-to-many modality interactions (e.g, sketch+text $\rightarrow$ photo retrieval). We importantly leverage the information bottleneck theory to achieve this goal, where we (i) decouple intra-modality information by minimising the mutual information between modality-specific and modality-agnostic components via a conditional invertible neural network, and (ii) align \textit{cross-modalities information} by maximising the mutual information between their modality-agnostic components using InfoNCE, with a specific multihead attention mechanism to allow many-to-many modality interactions. We spell out a few insights on the complementarity of each modality for scene understanding, and study for the first time a series of scene-specific applications like joint sketch- and text-based image retrieval, sketch captioning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:337:" <a href="http://arxiv.org/find/cs/1/au:+Chowdhury_P/0/1/0/all/0/1">Pinaki Nath Chowdhury</a>, <a href="http://arxiv.org/find/cs/1/au:+Bhunia_A/0/1/0/all/0/1">Ayan Kumar Bhunia</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiang_T/0/1/0/all/0/1">Tao Xiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Song_Y/0/1/0/all/0/1">Yi-Zhe Song</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:57;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11965";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:79:"Bug Characteristics in Quantum Software Ecosystem. (arXiv:2204.11965v1 [cs.SE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11965";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1928:"<p>With the advance in quantum computing in recent years, quantum software becomes vital for exploring the full potential of quantum computing systems. Quantum programming is different from classical programming, for example, the state of a quantum program is probabilistic in nature, and a quantum computer is error-prone due to the instability of quantum mechanisms. Therefore, the characteristics of bugs in quantum software projects may be very different from that of classical software projects. This work aims to understand the characteristics of bugs in quantum software projects, in order to provide insights to help devise effective testing and debugging mechanisms. To achieve this goal, we conduct an empirical study on the bug reports of 125 quantum software projects. We observe that quantum software projects are more buggy than classical software projects and that quantum project bugs are more costly to fix than classical project bugs. We also identify the types of the bugs and the quantum programming components where they occurred. Our study shows that the bugs are spread across different components, but quantum-specific bugs particularly appear in the compiler, gate operation, and state preparation components. The three most occurring types of bugs are Program anomaly bugs, Configuration bugs, and Data type and structure bugs. Our study highlights some particularly challenging areas in quantum software development, such as the lack of scientific quantum computation libraries that implement comprehensive mathematical functions for quantum computing. Quantum developers also seek specialized data manipulation libraries for quantum software engineering like Numpy for quantum computing. Our findings also provide insights for future work to advance the quantum program development, testing, and debugging of quantum software, such as providing tooling support for debugging low-level circuits. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:324:" <a href="http://arxiv.org/find/cs/1/au:+aoun_M/0/1/0/all/0/1">Mohamed Raed El aoun</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_H/0/1/0/all/0/1">Heng Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Khomh_F/0/1/0/all/0/1">Foutse Khomh</a>, <a href="http://arxiv.org/find/cs/1/au:+Tidjon_L/0/1/0/all/0/1">Lionel Tidjon</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:58;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11966";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"Estimating and Penalizing Induced Preference Shifts in Recommender Systems. (arXiv:2204.11966v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11966";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1498:"<p>The content that a recommender system (RS) shows to users influences them. Therefore, when choosing which recommender to deploy, one is implicitly also choosing to induce specific internal states in users. Even more, systems trained via long-horizon optimization will have direct incentives to manipulate users, e.g. shift their preferences so they are easier to satisfy. In this work we focus on induced preference shifts in users. We argue that - before deployment - system designers should: estimate the shifts a recommender would induce; evaluate whether such shifts would be undesirable; and even actively optimize to avoid problematic shifts. These steps involve two challenging ingredients: estimation requires anticipating how hypothetical policies would influence user preferences if deployed - we do this by using historical user interaction data to train predictive user model which implicitly contains their preference dynamics; evaluation and optimization additionally require metrics to assess whether such influences are manipulative or otherwise unwanted - we use the notion of "safe shifts", that define a trust region within which behavior is safe. In simulated experiments, we show that our learned preference dynamics model is effective in estimating user preferences and how they would respond to new recommenders. Additionally, we show that recommenders that optimize for staying in the trust region can avoid manipulative behaviors while still generating engagement. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:349:" <a href="http://arxiv.org/find/cs/1/au:+Carroll_M/0/1/0/all/0/1">Micah Carroll</a>, <a href="http://arxiv.org/find/cs/1/au:+Hadfield_Menell_D/0/1/0/all/0/1">Dylan Hadfield-Menell</a>, <a href="http://arxiv.org/find/cs/1/au:+Russell_S/0/1/0/all/0/1">Stuart Russell</a>, <a href="http://arxiv.org/find/cs/1/au:+Dragan_A/0/1/0/all/0/1">Anca Dragan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:59;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11970";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:131:"Visual Acuity Prediction on Real-Life Patient Data Using a Machine Learning Based Multistage System. (arXiv:2204.11970v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11970";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1713:"<p>In ophthalmology, intravitreal operative medication therapy (IVOM) is widespread treatment for diseases such as the age-related macular degeneration (AMD), the diabetic macular edema (DME), as well as the retinal vein occlusion (RVO). However, in real-world settings, patients often suffer from loss of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) and the earliest possible detection of deterioration under real-life conditions is challenging due to heterogeneous and incomplete data. In this contribution, we present a workflow for the development of a research-compatible data corpus fusing different IT systems of the department of ophthalmology of a German maximum care hospital. The extensive data corpus allows predictive statements of the expected progression of a patient and his or her VA in each of the three diseases. Within our proposed multistage system, we classify the VA progression into the three groups of therapy "winners", "stabilizers", and "losers" (WSL scheme). Our OCT biomarker classification using an ensemble of deep neural networks results in a classification accuracy (F1-score) of over 98 %, enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more precise VA modelling process. Our VA prediction requires at least four VA examinations and optionally OCT biomarkers from the same time period to predict the VA progression within a forecasted time frame. While achieving a prediction accuracy of up to 69 % (macro average F1-score) when considering all three WSL-based progression groups, this corresponds to an improvement by 11 % in comparison to our ophthalmic expertise (58 %). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:705:" <a href="http://arxiv.org/find/eess/1/au:+Schlosser_T/0/1/0/all/0/1">Tobias Schlosser</a>, <a href="http://arxiv.org/find/eess/1/au:+Beuth_F/0/1/0/all/0/1">Frederik Beuth</a>, <a href="http://arxiv.org/find/eess/1/au:+Meyer_T/0/1/0/all/0/1">Trixy Meyer</a>, <a href="http://arxiv.org/find/eess/1/au:+Kumar_A/0/1/0/all/0/1">Arunodhayan Sampath Kumar</a>, <a href="http://arxiv.org/find/eess/1/au:+Stolze_G/0/1/0/all/0/1">Gabriel Stolze</a>, <a href="http://arxiv.org/find/eess/1/au:+Furashova_O/0/1/0/all/0/1">Olga Furashova</a>, <a href="http://arxiv.org/find/eess/1/au:+Engelmann_K/0/1/0/all/0/1">Katrin Engelmann</a>, <a href="http://arxiv.org/find/eess/1/au:+Kowerko_D/0/1/0/all/0/1">Danny Kowerko</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:60;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11972";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"Gate-Level Side-Channel Leakage Assessment with Architecture Correlation Analysis. (arXiv:2204.11972v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11972";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:949:"<p>While side-channel leakage is traditionally evaluated from a fabricated chip, it is more time-efficient and cost-effective to do so during the design phase of the chip. We present a methodology to rank the gates of a design according to their contribution to the side-channel leakage of the chip. The methodology relies on logic synthesis, logic simulation, gate-level power estimation, and gate leakage assessment to compute a ranking. The ranking metric can be defined as a specific test by correlating gate-level activity with a leakage model, or else as a non-specific test by evaluating gate-level activity in response to distinct test vector groups. Our results show that only a minority of the gates in a design contribute most of the side-channel leakage. We demonstrate this property for several designs, including a hardware AES coprocessor and a cryptographic hardware/software interface in a five-stage pipelined RISC processor. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:836:" <a href="http://arxiv.org/find/cs/1/au:+Kiaei_P/0/1/0/all/0/1">Pantea Kiaei</a>, <a href="http://arxiv.org/find/cs/1/au:+Yao_Y/0/1/0/all/0/1">Yuan Yao</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Z/0/1/0/all/0/1">Zhenyuan Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Fern_N/0/1/0/all/0/1">Nicole Fern</a>, <a href="http://arxiv.org/find/cs/1/au:+Breunesse_C/0/1/0/all/0/1">Cees-Bart Breunesse</a>, <a href="http://arxiv.org/find/cs/1/au:+Woudenberg_J/0/1/0/all/0/1">Jasper Van Woudenberg</a>, <a href="http://arxiv.org/find/cs/1/au:+Gillis_K/0/1/0/all/0/1">Kate Gillis</a>, <a href="http://arxiv.org/find/cs/1/au:+Dich_A/0/1/0/all/0/1">Alex Dich</a>, <a href="http://arxiv.org/find/cs/1/au:+Grossmann_P/0/1/0/all/0/1">Peter Grossmann</a>, <a href="http://arxiv.org/find/cs/1/au:+Schaumont_P/0/1/0/all/0/1">Patrick Schaumont</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:61;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11980";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:87:"Decentralisation Conscious Players And System Reliability. (arXiv:2204.11980v1 [cs.GT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11980";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1087:"<p>We propose a game-theoretic model of the reliability of decentralised systems based on Varian's model of system reliability, to which we add a new normalised total effort case that models \textit{decentralisation conscious players} who prioritise decentralisation. We derive the Nash equilibria in the normalised total effort game. In these equilibria, either one or two values are played by players that do not free ride. The speed at which players can adjust their contributions can determine how an equilibrium is reached and equilibrium values. The behaviour of decentralisation conscious players is robust to deviations by other players. Our results highlight the role that decentralisation conscious players can play in maintaining decentralisation. They also highlight, however, that by supporting an equilibrium that requires an important contribution they cannot be expected to increase decentralisation as contributing the equilibrium value may still imply a loss for many players. We also discuss practical constraints on decentralisation in the context of our model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:165:" <a href="http://arxiv.org/find/cs/1/au:+Azouvi_S/0/1/0/all/0/1">Sarah Azouvi</a>, <a href="http://arxiv.org/find/cs/1/au:+Hicks_A/0/1/0/all/0/1">Alexander Hicks</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:62;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11981";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:109:"End-to-end Mapping in Heterogeneous Systems Using Graph Representation Learning. (arXiv:2204.11981v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11981";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:929:"<p>To enable heterogeneous computing systems with autonomous programming and optimization capabilities, we propose a unified, end-to-end, programmable graph representation learning (PGL) framework that is capable of mining the complexity of high-level programs down to the universal intermediate representation, extracting the specific computational patterns and predicting which code segments would run best on a specific core in heterogeneous hardware platforms. The proposed framework extracts multi-fractal topological features from code graphs, utilizes graph autoencoders to learn how to partition the graph into computational kernels, and exploits graph neural networks (GNN) to predict the correct assignment to a processor type. In the evaluation, we validate the PGL framework and demonstrate a maximum speedup of 6.42x compared to the thread-based execution, and 2.02x compared to the state-of-the-art technique. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:572:" <a href="http://arxiv.org/find/cs/1/au:+Xiao_Y/0/1/0/all/0/1">Yao Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_G/0/1/0/all/0/1">Guixiang Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Ahmed_N/0/1/0/all/0/1">Nesreen K. Ahmed</a>, <a href="http://arxiv.org/find/cs/1/au:+Capota_M/0/1/0/all/0/1">Mihai Capota</a>, <a href="http://arxiv.org/find/cs/1/au:+Willke_T/0/1/0/all/0/1">Theodore Willke</a>, <a href="http://arxiv.org/find/cs/1/au:+Nazarian_S/0/1/0/all/0/1">Shahin Nazarian</a>, <a href="http://arxiv.org/find/cs/1/au:+Bogdan_P/0/1/0/all/0/1">Paul Bogdan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:63;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11982";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:132:"BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation. (arXiv:2204.11982v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11982";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1255:"<p>Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions. </p> <p>In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:454:" <a href="http://arxiv.org/find/cs/1/au:+Borrego_Carazo_J/0/1/0/all/0/1">Juan Borrego-Carazo</a>, <a href="http://arxiv.org/find/cs/1/au:+Sanchez_C/0/1/0/all/0/1">Carles Sánchez</a>, <a href="http://arxiv.org/find/cs/1/au:+Castells_Rufas_D/0/1/0/all/0/1">David Castells-Rufas</a>, <a href="http://arxiv.org/find/cs/1/au:+Carrabina_J/0/1/0/all/0/1">Jordi Carrabina</a>, <a href="http://arxiv.org/find/cs/1/au:+Gil_D/0/1/0/all/0/1">Débora Gil</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:64;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11985";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:69:"When adversarial examples are excusable. (arXiv:2204.11985v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11985";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1134:"<p>Neural networks work remarkably well in practice and theoretically they can be universal approximators. However, they still make mistakes and a specific type of them called adversarial errors seem inexcusable to humans. In this work, we analyze both test errors and adversarial errors on a well controlled but highly non-linear visual classification problem. We find that, when approximating training on infinite data, test errors tend to be close to the ground truth decision boundary. Qualitatively speaking these are also more difficult for a human. By contrast, adversarial examples can be found almost everywhere and are often obvious mistakes. However, when we constrain adversarial examples to the manifold, we observe a 90\% reduction in adversarial errors. If we inflate the manifold by training with Gaussian noise we observe a similar effect. In both cases, the remaining adversarial errors tend to be close to the ground truth decision boundary. Qualitatively, the remaining adversarial errors are similar to test errors on difficult examples. They do not have the customary quality of being inexcusable mistakes. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:178:" <a href="http://arxiv.org/find/cs/1/au:+Kindermans_P/0/1/0/all/0/1">Pieter-Jan Kindermans</a>, <a href="http://arxiv.org/find/cs/1/au:+Staats_C/0/1/0/all/0/1">Charles Staats</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:65;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11989";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"C3: Continued Pretraining with Contrastive Weak Supervision for Cross Language Ad-Hoc Retrieval. (arXiv:2204.11989v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11989";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:671:"<p>Pretrained language models have improved effectiveness on numerous tasks, including ad-hoc retrieval. Recent work has shown that continuing to pretrain a language model with auxiliary objectives before fine-tuning on the retrieval task can further improve retrieval effectiveness. Unlike monolingual retrieval, designing an appropriate auxiliary task for cross-language mappings is challenging. To address this challenge, we use comparable Wikipedia articles in different languages to further pretrain off-the-shelf multilingual pretrained models before fine-tuning on the retrieval task. We show that our approach yields improvements in retrieval effectiveness. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:436:" <a href="http://arxiv.org/find/cs/1/au:+Yang_E/0/1/0/all/0/1">Eugene Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Nair_S/0/1/0/all/0/1">Suraj Nair</a>, <a href="http://arxiv.org/find/cs/1/au:+Chandradevan_R/0/1/0/all/0/1">Ramraj Chandradevan</a>, <a href="http://arxiv.org/find/cs/1/au:+Iglesias_Flores_R/0/1/0/all/0/1">Rebecca Iglesias-Flores</a>, <a href="http://arxiv.org/find/cs/1/au:+Oard_D/0/1/0/all/0/1">Douglas W. Oard</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:66;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11992";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:144:"Offline Vehicle Routing Problem with Online Bookings: A Novel Problem Formulation with Applications to Paratransit. (arXiv:2204.11992v1 [cs.AI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11992";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1433:"<p>Vehicle routing problems (VRPs) can be divided into two major categories: offline VRPs, which consider a given set of trip requests to be served, and online VRPs, which consider requests as they arrive in real-time. Based on discussions with public transit agencies, we identify a real-world problem that is not addressed by existing formulations: booking trips with flexible pickup windows (e.g., 3 hours) in advance (e.g., the day before) and confirming tight pickup windows (e.g., 30 minutes) at the time of booking. Such a service model is often required in paratransit service settings, where passengers typically book trips for the next day over the phone. To address this gap between offline and online problems, we introduce a novel formulation, the offline vehicle routing problem with online bookings. This problem is very challenging computationally since it faces the complexity of considering large sets of requests -- similar to offline VRPs -- but must abide by strict constraints on running time -- similar to online VRPs. To solve this problem, we propose a novel computational approach, which combines an anytime algorithm with a learning-based policy for real-time decisions. Based on a paratransit dataset obtained from our partner transit agency, we demonstrate that our novel formulation and computational approach lead to significantly better outcomes in this service setting than existing algorithms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:620:" <a href="http://arxiv.org/find/cs/1/au:+Sivagnanam_A/0/1/0/all/0/1">Amutheezan Sivagnanam</a>, <a href="http://arxiv.org/find/cs/1/au:+Kadir_S/0/1/0/all/0/1">Salah Uddin Kadir</a>, <a href="http://arxiv.org/find/cs/1/au:+Mukhopadhyay_A/0/1/0/all/0/1">Ayan Mukhopadhyay</a>, <a href="http://arxiv.org/find/cs/1/au:+Pugliese_P/0/1/0/all/0/1">Philip Pugliese</a>, <a href="http://arxiv.org/find/cs/1/au:+Dubey_A/0/1/0/all/0/1">Abhishek Dubey</a>, <a href="http://arxiv.org/find/cs/1/au:+Samaranayake_S/0/1/0/all/0/1">Samitha Samaranayake</a>, <a href="http://arxiv.org/find/cs/1/au:+Laszka_A/0/1/0/all/0/1">Aron Laszka</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:67;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11994";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:140:"Contrastive learning-based computational histopathology predict differential expression of cancer driver genes. (arXiv:2204.11994v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11994";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1389:"<p>Digital pathological analysis is run as the main examination used for cancer diagnosis. Recently, deep learning-driven feature extraction from pathology images is able to detect genetic variations and tumor environment, but few studies focus on differential gene expression in tumor cells. In this paper, we propose a self-supervised contrastive learning framework, HistCode, to infer differential gene expressions from whole slide images (WSIs). We leveraged contrastive learning on large-scale unannotated WSIs to derive slide-level histopathological feature in latent space, and then transfer it to tumor diagnosis and prediction of differentially expressed cancer driver genes. Our extensive experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks, and also effectively predicted differential gene expressions. Interestingly, we found the higher fold-changed genes can be more precisely predicted. To intuitively illustrate the ability to extract informative features from pathological images, we spatially visualized the WSIs colored by the attentive scores of image tiles. We found that the tumor and necrosis areas were highly consistent with the annotations of experienced pathologists. Moreover, the spatial heatmap generated by lymphocyte-specific gene expression patterns was also consistent with the manually labeled WSI. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:543:" <a href="http://arxiv.org/find/cs/1/au:+Huang_H/0/1/0/all/0/1">Haojue Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhou_G/0/1/0/all/0/1">Gongming Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xuejun Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_L/0/1/0/all/0/1">Lei Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_C/0/1/0/all/0/1">Chen Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_D/0/1/0/all/0/1">Dachuan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_H/0/1/0/all/0/1">Hui Liu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:68;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12000";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"AI Personification: Estimating the Personality of Language Models. (arXiv:2204.12000v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12000";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1480:"<p>Technology for open-ended language generation, a key application of artificial intelligence, has advanced to a great extent in recent years. Large-scale language models, which are trained on large corpora of text, are being used in a wide range of applications everywhere, from virtual assistants to conversational bots. While these language models output fluent text, existing research shows that these models can and do capture human biases. Many of these biases, especially those that could potentially cause harm, are being well investigated. On the other hand, studies that infer and change personality traits inherited by these models have been scarce or non-existent. In this work, we explore the personality traits of several large-scale language models designed for open-ended text generation and the datasets used for training them. Our work builds on the popular Big Five factors and develops robust methods that quantify the personality traits of these models and their underlying datasets. In particular, we trigger the models with a questionnaire designed for personality assessment and subsequently classify the text responses into quantifiable traits using a Zero-shot classifier. Our classification sheds light on an important anthropomorphic element found in such AI models and can help stakeholders decide how they should be applied and how society could perceive them. We augment our analysis by studying approaches that can alter these personalities. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:260:" <a href="http://arxiv.org/find/cs/1/au:+Karra_S/0/1/0/all/0/1">Saketh Reddy Karra</a>, <a href="http://arxiv.org/find/cs/1/au:+Nguyen_S/0/1/0/all/0/1">Son Nguyen</a>, <a href="http://arxiv.org/find/cs/1/au:+Tulabandhula_T/0/1/0/all/0/1">Theja Tulabandhula</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:69;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12005";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification. (arXiv:2204.12005v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12005";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1637:"<p>A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on-the-fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, an efficient k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 66 to 4,417x speed-up with 1 to 5% relative errors. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:413:" <a href="http://arxiv.org/find/eess/1/au:+He_X/0/1/0/all/0/1">Xiaolong He</a>, <a href="http://arxiv.org/find/eess/1/au:+Choi_Y/0/1/0/all/0/1">Youngsoo Choi</a>, <a href="http://arxiv.org/find/eess/1/au:+Fries_W/0/1/0/all/0/1">William D. Fries</a>, <a href="http://arxiv.org/find/eess/1/au:+Belof_J/0/1/0/all/0/1">Jon Belof</a>, <a href="http://arxiv.org/find/eess/1/au:+Chen_J/0/1/0/all/0/1">Jiun-Shyan Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:70;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12006";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"Parametric Dynamic Mode Decomposition for Reduced Order Modeling. (arXiv:2204.12006v1 [math.NA])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12006";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1077:"<p>Dynamic Mode Decomposition (DMD) is a model-order reduction approach, whereby spatial modes of fixed temporal frequencies are extracted from numerical or experimental data sets. The DMD low-rank or reduced operator is typically obtained by singular value decomposition of the temporal data sets. For parameter-dependent models, as found in many multi-query applications such as uncertainty quantification or design optimization, the only parametric DMD technique developed was a stacked approach, with data sets at multiples parameter values were aggregated together, increasing the computational work needed to devise low-rank dynamical reduced-order models. In this paper, we present two novel approach to carry out parametric DMD: one based on the interpolation of the reduced-order DMD eigenpair and the other based on the interpolation of the reduced DMD (Koopman) operator. Numerical results are presented for diffusion-dominated nonlinear dynamical problems, including a multiphysics radiative transfer example. All three parametric DMD approaches are compared. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:338:" <a href="http://arxiv.org/find/math/1/au:+Huhn_Q/0/1/0/all/0/1">Quincy A. Huhn</a>, <a href="http://arxiv.org/find/math/1/au:+Tano_M/0/1/0/all/0/1">Mauricio E. Tano</a>, <a href="http://arxiv.org/find/math/1/au:+Ragusa_J/0/1/0/all/0/1">Jean C. Ragusa</a>, <a href="http://arxiv.org/find/math/1/au:+Choi_Y/0/1/0/all/0/1">Youngsoo Choi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:71;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:132:"Assessing the ability of generative adversarial networks to learn canonical medical image statistics. (arXiv:2204.12007v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12007";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1090:"<p>In recent years, generative adversarial networks (GANs) have gained tremendous popularity for potential applications in medical imaging, such as medical image synthesis, restoration, reconstruction, translation, as well as objective image quality assessment. Despite the impressive progress in generating high-resolution, perceptually realistic images, it is not clear if modern GANs reliably learn the statistics that are meaningful to a downstream medical imaging application. In this work, the ability of a state-of-the-art GAN to learn the statistics of canonical stochastic image models (SIMs) that are relevant to objective assessment of image quality is investigated. It is shown that although the employed GAN successfully learned several basic first- and second-order statistics of the specific medical SIMs under consideration and generated images with high perceptual quality, it failed to correctly learn several per-image statistics pertinent to the these SIMs, highlighting the urgent need to assess medical image GANs in terms of objective measures of image quality. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:601:" <a href="http://arxiv.org/find/eess/1/au:+Kelkar_V/0/1/0/all/0/1">Varun A. Kelkar</a>, <a href="http://arxiv.org/find/eess/1/au:+Gotsis_D/0/1/0/all/0/1">Dimitrios S. Gotsis</a>, <a href="http://arxiv.org/find/eess/1/au:+Brooks_F/0/1/0/all/0/1">Frank J. Brooks</a>, <a href="http://arxiv.org/find/eess/1/au:+KC_P/0/1/0/all/0/1">Prabhat KC</a>, <a href="http://arxiv.org/find/eess/1/au:+Myers_K/0/1/0/all/0/1">Kyle J. Myers</a>, <a href="http://arxiv.org/find/eess/1/au:+Zeng_R/0/1/0/all/0/1">Rongping Zeng</a>, <a href="http://arxiv.org/find/eess/1/au:+Anastasio_M/0/1/0/all/0/1">Mark A. Anastasio</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:72;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12008";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"Virtual Reality Applications in Software Engineering Education: A Systematic Review. (arXiv:2204.12008v1 [cs.SE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12008";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1271:"<p>Requirement Engineering (RE) is a Software Engineering (SE) process of defining, documenting, and maintaining the requirements from a problem. It is one of the most complex processes of SE because it addresses the relation between customer and developer. RE learning may be abstract and complex for most students because many of them cannot visualize the subject directly applied. Through the advancement of technology, Virtual Reality (VR) hardware is becoming increasingly more accessible, and it is not rare to use it in education. Little research and systematic studies explain the integration between SE and VR, and even less between RE and VR. Hence, this systematic review proposes to select and present studies that relate the use of VR applications to teach SE and RE concepts. We selected nine studies to include in this review. Despite the lack of articles addressing the topic, the results from this study showed that the use of VR technologies for learning SE is still very seminal. The projects based essentially on visualization. There are lack of tasks to build modeling artifacts, and also interaction with stakeholders and other software engineers. Learning tasks and the monitoring of students' progress by teachers also need to be considered. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:564:" <a href="http://arxiv.org/find/cs/1/au:+Andrade_G/0/1/0/all/0/1">Gustavo Vargas de Andrade</a>, <a href="http://arxiv.org/find/cs/1/au:+Gomes_A/0/1/0/all/0/1">André Luiz Cordeiro Gomes</a>, <a href="http://arxiv.org/find/cs/1/au:+Hoinoski_F/0/1/0/all/0/1">Felipe Rohr Hoinoski</a>, <a href="http://arxiv.org/find/cs/1/au:+Ferreira_M/0/1/0/all/0/1">Marília Guterres Ferreira</a>, <a href="http://arxiv.org/find/cs/1/au:+Schoeffel_P/0/1/0/all/0/1">Pablo Schoeffel</a>, <a href="http://arxiv.org/find/cs/1/au:+Vahldick_A/0/1/0/all/0/1">Adilson Vahldick</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:73;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12010";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"Theoretical Understanding of the Information Flow on Continual Learning Performance. (arXiv:2204.12010v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12010";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1619:"<p>Continual learning (CL) is a setting in which an agent has to learn from an incoming stream of data sequentially. CL performance evaluates the model's ability to continually learn and solve new problems with incremental available information over time while retaining previous knowledge. Despite the numerous previous solutions to bypass the catastrophic forgetting (CF) of previously seen tasks during the learning process, most of them still suffer significant forgetting, expensive memory cost, or lack of theoretical understanding of neural networks' conduct while learning new tasks. While the issue that CL performance degrades under different training regimes has been extensively studied empirically, insufficient attention has been paid from a theoretical angle. In this paper, we establish a probabilistic framework to analyze information flow through layers in networks for task sequences and its impact on learning performance. Our objective is to optimize the information preservation between layers while learning new tasks to manage task-specific knowledge passing throughout the layers while maintaining model performance on previous tasks. In particular, we study CL performance's relationship with information flow in the network to answer the question "How can knowledge of information flow between layers be used to alleviate CF?". Our analysis provides novel insights of information adaptation within the layers during the incremental task learning process. Through our experiments, we provide empirical evidence and practically highlight the performance improvement across multiple tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:167:" <a href="http://arxiv.org/find/cs/1/au:+Andle_J/0/1/0/all/0/1">Josh Andle</a>, <a href="http://arxiv.org/find/cs/1/au:+Sekeh_S/0/1/0/all/0/1">Salimeh Yasaei Sekeh</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:74;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12013";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:114:"Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs. (arXiv:2204.12013v1 [cs.DC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12013";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1418:"<p>DNN models across many domains continue to grow in size, resulting in high resource requirements for effective training, and unpalatable (and often unaffordable) costs for organizations and research labs across scales. This paper aims to significantly reduce training costs with effective use of preemptible instances, i.e., those that can be obtained at a much cheaper price while idle, but may be preempted whenever requested by priority users. Doing so, however, requires new forms of resiliency and efficiency to cope with the possibility of frequent preemptions - a failure model that is drastically different from the occasional failures in normal cluster settings that existing checkpointing techniques target. </p> <p>We present Bamboo, a distributed system that tackles these challenges by introducing redundant computations into the training pipeline, i.e., whereby one node performs computations over not only its own layers but also over some layers in its neighbor. Our key insight is that training large models often requires pipeline parallelism where "pipeline bubbles" naturally exist. Bamboo carefully fills redundant computations into these bubbles, providing resilience at a low cost. Across a variety of widely used DNN models, Bamboo outperforms traditional checkpointing by 3.7x in training throughput, and reduces costs by 2.4x compared to a setting where on-demand instances are used. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:655:" <a href="http://arxiv.org/find/cs/1/au:+Thorpe_J/0/1/0/all/0/1">John Thorpe</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_P/0/1/0/all/0/1">Pengzhan Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Eyolfson_J/0/1/0/all/0/1">Jonathan Eyolfson</a>, <a href="http://arxiv.org/find/cs/1/au:+Qiao_Y/0/1/0/all/0/1">Yifan Qiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_Z/0/1/0/all/0/1">Zhihao Jia</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_M/0/1/0/all/0/1">Minjia Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Netravali_R/0/1/0/all/0/1">Ravi Netravali</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_G/0/1/0/all/0/1">Guoqing Harry Xu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:75;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12020";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"Balancing Age-Energy Tradeoff in Sleep-Wake Server Systems. (arXiv:2204.12020v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12020";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1595:"<p>The surging demand for fresh information from various Internet of Things (IoT) applications requires oceans of data to be transmitted and processed timely. How to guarantee information freshness while reducing energy consumption thus becomes imperative. We consider a multi-source single-server queueing system, where we aim to design the optimal sleep-wake strategy for the server to reduce its energy consumption while guaranteeing users' information freshness. We propose a sleep-wake strategy that relies on an idling scheme called Conditional Sleep (CS) scheme. We show that the proposed CS scheme can achieve a smaller Age of Information (AoI) than the widely-used Hysteresis Time (HT) scheme and Bernoulli Sleep (BS) scheme, while retaining the same power consumption and Peak Age of Information (PAoI). Moreover, we find that increasing the sleep period length can always reduce energy consumption and enlarge the PAoI, but it does not always increase AoI. We also find that using PAoI as the information freshness metric in designing the optimal sleep-wake strategies would make the server sleep infinitely long. Our analysis reveals that this result is due to the PAoI being a first-order statistic. We further extend our discussion to the scenario where data sources choose sampling rates strategically based on the sleep-wake strategy of the server. We show that increasing the sleeping period length for the server while guaranteeing users' PAoI could lead to a minor reduction of the server's energy consumption but significantly increase the data sources' sampling costs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:304:" <a href="http://arxiv.org/find/cs/1/au:+Xu_J/0/1/0/all/0/1">Jin Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_X/0/1/0/all/0/1">Xinyuan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_Q/0/1/0/all/0/1">Qisheng Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_P/0/1/0/all/0/1">Peng Sun</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:76;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12022";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"Estimating the Resize Parameter in End-to-end Learned Image Compression. (arXiv:2204.12022v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12022";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1239:"<p>We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models. Our approach is simple: compose a pair of differentiable downsampling/upsampling layers that sandwich a neural compression model. To determine resize factors for different inputs, we utilize another neural network jointly trained with the compression model, with the end goal of minimizing the rate-distortion objective. Our results suggest that "compression friendly" downsampled representations can be quickly determined during encoding by using an auxiliary network and differentiable image warping. By conducting extensive experimental tests on existing deep image compression models, we show results that our new resizing parameter estimation framework can provide Bj{\o}ntegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines. We also carried out a subjective quality study, the results of which show that our new approach yields favorable compressed images. To facilitate reproducible research in this direction, the implementation used in this paper is being made freely available online at: https://github.com/treammm/ResizeCompression. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:426:" <a href="http://arxiv.org/find/eess/1/au:+Chen_L/0/1/0/all/0/1">Li-Heng Chen</a>, <a href="http://arxiv.org/find/eess/1/au:+Bampis_C/0/1/0/all/0/1">Christos G. Bampis</a>, <a href="http://arxiv.org/find/eess/1/au:+Li_Z/0/1/0/all/0/1">Zhi Li</a>, <a href="http://arxiv.org/find/eess/1/au:+Krasula_L/0/1/0/all/0/1">Lukáš Krasula</a>, <a href="http://arxiv.org/find/eess/1/au:+Bovik_A/0/1/0/all/0/1">Alan C. Bovik</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:77;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12024";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Reprint: a randomized extrapolation based on principal components for data augmentation. (arXiv:2204.12024v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12024";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1501:"<p>Data scarcity and data imbalance have attracted a lot of attention in many fields. Data augmentation, explored as an effective approach to tackle them, can improve the robustness and efficiency of classification models by generating new samples. This paper presents REPRINT, a simple and effective hidden-space data augmentation method for imbalanced data classification. Given hidden-space representations of samples in each class, REPRINT extrapolates, in a randomized fashion, augmented examples for target class by using subspaces spanned by principal components to summarize distribution structure of both source and target class. Consequently, the examples generated would diversify the target while maintaining the original geometry of target distribution. Besides, this method involves a label refinement component which allows to synthesize new soft labels for augmented examples. Compared with different NLP data augmentation approaches under a range of data imbalanced scenarios on four text classification benchmark, REPRINT shows prominent improvements. Moreover, through comprehensive ablation studies, we show that label refinement is better than label-preserving for augmented examples, and that our method suggests stable and consistent improvements in terms of suitable choices of principal components. Moreover, REPRINT is appealing for its easy-to-use since it contains only one hyperparameter determining the dimension of subspace and requires low computational resource. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:384:" <a href="http://arxiv.org/find/cs/1/au:+Wei_J/0/1/0/all/0/1">Jiale Wei</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_Q/0/1/0/all/0/1">Qiyuan Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Peng_P/0/1/0/all/0/1">Pai Peng</a>, <a href="http://arxiv.org/find/cs/1/au:+Guedj_B/0/1/0/all/0/1">Benjamin Guedj</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_L/0/1/0/all/0/1">Le Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:78;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12026";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:68:"BATS: Best Action Trajectory Stitching. (arXiv:2204.12026v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12026";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1397:"<p>The problem of offline reinforcement learning focuses on learning a good policy from a log of environment interactions. Past efforts for developing algorithms in this area have revolved around introducing constraints to online reinforcement learning algorithms to ensure the actions of the learned policy are constrained to the logged data. In this work, we explore an alternative approach by planning on the fixed dataset directly. Specifically, we introduce an algorithm which forms a tabular Markov Decision Process (MDP) over the logged data by adding new transitions to the dataset. We do this by using learned dynamics models to plan short trajectories between states. Since exact value iteration can be performed on this constructed MDP, it becomes easy to identify which trajectories are advantageous to add to the MDP. Crucially, since most transitions in this MDP come from the logged data, trajectories from the MDP can be rolled out for long periods with confidence. We prove that this property allows one to make upper and lower bounds on the value function up to appropriate distance metrics. Finally, we demonstrate empirically how algorithms that uniformly constrain the learned policy to the entire dataset can result in unwanted behavior, and we show an example in which simply behavior cloning the optimal policy of the MDP created by our algorithm avoids this problem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:411:" <a href="http://arxiv.org/find/cs/1/au:+Char_I/0/1/0/all/0/1">Ian Char</a>, <a href="http://arxiv.org/find/cs/1/au:+Mehta_V/0/1/0/all/0/1">Viraj Mehta</a>, <a href="http://arxiv.org/find/cs/1/au:+Villaflor_A/0/1/0/all/0/1">Adam Villaflor</a>, <a href="http://arxiv.org/find/cs/1/au:+Dolan_J/0/1/0/all/0/1">John M. Dolan</a>, <a href="http://arxiv.org/find/cs/1/au:+Schneider_J/0/1/0/all/0/1">Jeff Schneider</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:79;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12027";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:155:"On Routing, Wavelength, Network Coding Assignment and Protection Configuration Problem in Optical-processing-enabled Networks. (arXiv:2204.12027v1 [cs.NI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12027";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1491:"<p>In optical-processing-enabled network, transitional lightpaths crossing the same node could be optically encoded to each other to achieve greater spectral efficiency. In this context, we present a new research problem, entitled, routing, wavelength, network coding assignment and protection configuration (RWNCA-PC) arisen in exploiting photonic network coding (NC) for dedicated path protection in wavelength division multiplexing (WDM) networks with an extra degree of freedom in the selection of protection triggering mechanism, that is, network-side and client-side, tailoring to each connection. In order to maximize the NC benefits, we thus provide a weighted multi-objective optimization model for solving RWNCA-PC problem so as to minimize the wavelength count as the strictly prioritized goal and the redundant resources measured by the number of client-side connections as the secondary objective. Numerical results on the realistic COST239 network reveal that a saving of up to $25\%$ wavelength resources could be achieved thanks to the optimal use of NC compared to the non-coding designs and among coding-aware designs, the use of mixed protection configurations would be spectrally more efficient than the design with only network-side protection scheme. Our proposal yields the highest spectrum efficiency compared to all reference designs and moreover, features an average saving of more than $40\%$ transponder count compared with its single objective counterpart. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:79:" <a href="http://arxiv.org/find/cs/1/au:+Hai_D/0/1/0/all/0/1">Dao Thanh Hai</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:80;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12031";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:77:"Boundary Smoothing for Named Entity Recognition. (arXiv:2204.12031v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12031";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:786:"<p>Neural named entity recognition (NER) models may easily encounter the over-confidence issue, which degrades the performance and calibration. Inspired by label smoothing and driven by the ambiguity of boundary annotation in NER engineering, we propose boundary smoothing as a regularization technique for span-based neural NER models. It re-assigns entity probabilities from annotated spans to the surrounding ones. Built on a simple but strong baseline, our model achieves results better than or competitive with previous state-of-the-art systems on eight well-known NER benchmarks. Further empirical analysis suggests that boundary smoothing effectively mitigates over-confidence, improves model calibration, and brings flatter neural minima and more smoothed loss landscapes. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:151:" <a href="http://arxiv.org/find/cs/1/au:+Zhu_E/0/1/0/all/0/1">Enwei Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_J/0/1/0/all/0/1">Jinpeng Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:81;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12034";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:81:"A construction of optimal locally recoverable codes. (arXiv:2204.12034v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12034";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:457:"<p>Locally recoverable codes are widely used in distributed and cloud storage systems. The objective of this paper is to present a construction of near MDS codes with oval polynomials and then determine the locality of the codes. It turns out that the near MDS codes and their duals are both distance-optimal and dimension-optimal locally recoverable codes. The lengths of the locally recoverable codes are different from known ones in the literature. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:153:" <a href="http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1">Xiaoru Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Heng_Z/0/1/0/all/0/1">Ziling Heng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:82;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12035";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:84:"Information Fusion: Scaling Subspace-Driven Approaches. (arXiv:2204.12035v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12035";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:784:"<p>In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:159:" <a href="http://arxiv.org/find/cs/1/au:+Ghanem_S/0/1/0/all/0/1">Sally Ghanem</a>, <a href="http://arxiv.org/find/cs/1/au:+Krim_H/0/1/0/all/0/1">Hamid Krim</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:83;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12036";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"Adaptive Pseudo-Siamese Policy Network for Temporal Knowledge Prediction. (arXiv:2204.12036v1 [cs.AI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12036";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1606:"<p>Temporal knowledge prediction is a crucial task for the event early warning that has gained increasing attention in recent years, which aims to predict the future facts by using relevant historical facts on the temporal knowledge graphs. There are two main difficulties in this prediction task. First, from the historical facts point of view, how to model the evolutionary patterns of the facts to predict the query accurately. Second, from the query perspective, how to handle the two cases where the query contains seen and unseen entities in a unified framework. Driven by the two problems, we propose a novel adaptive pseudo-siamese policy network for temporal knowledge prediction based on reinforcement learning. Specifically, we design the policy network in our model as a pseudo-siamese policy network that consists of two sub-policy networks. In sub-policy network I, the agent searches for the answer for the query along the entity-relation paths to capture the static evolutionary patterns. And in sub-policy network II, the agent searches for the answer for the query along the relation-time paths to deal with unseen entities. Moreover, we develop a temporal relation encoder to capture the temporal evolutionary patterns. Finally, we design a gating mechanism to adaptively integrate the results of the two sub-policy networks to help the agent focus on the destination answer. To assess our model performance, we conduct link prediction on four benchmark datasets, the experimental results demonstrate that our method obtains considerable performance compared with existing methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:389:" <a href="http://arxiv.org/find/cs/1/au:+Shao_P/0/1/0/all/0/1">Pengpeng Shao</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_T/0/1/0/all/0/1">Tong Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Che_F/0/1/0/all/0/1">Feihu Che</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_D/0/1/0/all/0/1">Dawei Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_J/0/1/0/all/0/1">Jianhua Tao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:84;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12037";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"Causal Reasoning with Spatial-temporal Representation Learning: A Prospective Study. (arXiv:2204.12037v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12037";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1699:"<p>Spatial-temporal representation learning is ubiquitous in various real-world applications, including visual comprehension, video understanding, multi-modal analysis, human-computer interaction, and urban computing. Due to the emergence of huge amounts of multi-modal heterogeneous spatial/temporal/spatial-temporal data in big data era, the existing visual methods rely heavily on large-scale data annotations and supervised learning to learn a powerful big model. However, the lack of interpretability, robustness, and out-of-distribution generalization are becoming the bottleneck problems of these models, which hinders the progress of interpretable and reliable artificial intelligence. The majority of the existing methods are based on correlation learning with the assumption that the data are independent and identically distributed, which lack an unified guidance and analysis about why modern spatial-temporal representation learning methods have limited interpretability and easily collapse into dataset bias. Inspired by the strong inference ability of human-level agents, recent years have therefore witnessed great effort in developing causal reasoning paradigms to realize robust representation and model learning with good interpretability. In this paper, we conduct a comprehensive review of existing causal reasoning methods for spatial-temporal representation learning, covering fundamental theories, models, and datasets. The limitations of current methods and datasets are also discussed. Moreover, we propose some primary challenges, opportunities, and future research directions for benchmarking causal reasoning algorithms in spatial-temporal representation learning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:378:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wei_Y/0/1/0/all/0/1">Yushen Wei</a>, <a href="http://arxiv.org/find/cs/1/au:+Yan_H/0/1/0/all/0/1">Hong Yan</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_G/0/1/0/all/0/1">Guanbin Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Lin_L/0/1/0/all/0/1">Liang Lin</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:85;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12039";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Learning Weighting Map for Bit-Depth Expansion within a Rational Range. (arXiv:2204.12039v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12039";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1327:"<p>Bit-depth expansion (BDE) is one of the emerging technologies to display high bit-depth (HBD) image from low bit-depth (LBD) source. Existing BDE methods have no unified solution for various BDE situations, and directly learn a mapping for each pixel from LBD image to the desired value in HBD image, which may change the given high-order bits and lead to a huge deviation from the ground truth. In this paper, we design a bit restoration network (BRNet) to learn a weight for each pixel, which indicates the ratio of the replenished value within a rational range, invoking an accurate solution without modifying the given high-order bit information. To make the network adaptive for any bit-depth degradation, we investigate the issue in an optimization perspective and train the network under progressive training strategy for better performance. Moreover, we employ Wasserstein distance as a visual quality indicator to evaluate the difference of color distribution between restored image and the ground truth. Experimental results show our method can restore colorful images with fewer artifacts and false contours, and outperforms state-of-the-art methods with higher PSNR/SSIM results and lower Wasserstein distance. The source code will be made available at https://github.com/yuqing-liu-dut/bit-depth-expansion </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:530:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yuqing Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_Q/0/1/0/all/0/1">Qi Jia</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jian Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Fan_X/0/1/0/all/0/1">Xin Fan</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_S/0/1/0/all/0/1">Shanshe Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_S/0/1/0/all/0/1">Siwei Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Gao_W/0/1/0/all/0/1">Wen Gao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:86;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12043";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"An Efficient Dynamic Sampling Policy For Monte Carlo Tree Search. (arXiv:2204.12043v1 [cs.AI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12043";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:527:"<p>We consider the popular tree-based search strategy within the framework of reinforcement learning, the Monte Carlo Tree Search (MCTS), in the context of finite-horizon Markov decision process. We propose a dynamic sampling tree policy that efficiently allocates limited computational budget to maximize the probability of correct selection of the best action at the root node of the tree. Experimental results on Tic-Tac-Toe and Gomoku show that the proposed tree policy is more efficient than other competing methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:233:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_G/0/1/0/all/0/1">Gongbo Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Peng_Y/0/1/0/all/0/1">Yijie Peng</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yilong Xu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:87;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12044";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"ISTRBoost: Importance Sampling Transfer Regression using Boosting. (arXiv:2204.12044v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12044";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1317:"<p>Current Instance Transfer Learning (ITL) methodologies use domain adaptation and sub-space transformation to achieve successful transfer learning. However, these methodologies, in their processes, sometimes overfit on the target dataset or suffer from negative transfer if the test dataset has a high variance. Boosting methodologies have been shown to reduce the risk of overfitting by iteratively re-weighing instances with high-residual. However, this balance is usually achieved with parameter optimization, as well as reducing the skewness in weights produced due to the size of the source dataset. While the former can be achieved, the latter is more challenging and can lead to negative transfer. We introduce a simpler and more robust fix to this problem by building upon the popular boosting ITL regression methodology, two-stage TrAdaBoost.R2. Our methodology,~\us{}, is a boosting and random-forest based ensemble methodology that utilizes importance sampling to reduce the skewness due to the source dataset. We show that~\us{}~performs better than competitive transfer learning methodologies $63\%$ of the time. It also displays consistency in its performance over diverse datasets with varying complexities, as opposed to the sporadic results observed for other transfer learning methodologies. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:315:" <a href="http://arxiv.org/find/cs/1/au:+Gupta_S/0/1/0/all/0/1">Shrey Gupta</a>, <a href="http://arxiv.org/find/cs/1/au:+Bi_J/0/1/0/all/0/1">Jianzhao Bi</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wildani_A/0/1/0/all/0/1">Avani Wildani</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:88;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12046";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Experience Report: Standards-Based Grading at Scale in Algorithms. (arXiv:2204.12046v1 [cs.CY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12046";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:587:"<p>We report our experiences implementing standards-based grading at scale in an Algorithms course, which serves as the terminal required CS Theory course in our department's undergraduate curriculum. The course had 200-400 students, taught by two instructors, eight graduate teaching assistants, and supported by two additional graders and several undergraduate course assistants. We highlight the role of standards-based grading in supporting our students during the COVID-19 pandemic. We conclude by detailing the successes and adjustments we would make to the course structure. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:326:" <a href="http://arxiv.org/find/cs/1/au:+Chen_L/0/1/0/all/0/1">Lijun Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Grochow_J/0/1/0/all/0/1">Joshua A. Grochow</a>, <a href="http://arxiv.org/find/cs/1/au:+Layer_R/0/1/0/all/0/1">Ryan Layer</a>, <a href="http://arxiv.org/find/cs/1/au:+Levet_M/0/1/0/all/0/1">Michael Levet</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:89;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12048";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:87:"Thompson Sampling for Bandit Learning in Matching Markets. (arXiv:2204.12048v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12048";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1153:"<p>The problem of two-sided matching markets has a wide range of real-world applications and has been extensively studied in the literature. A line of recent works have focused on the problem setting where the preferences of one-side market participants are unknown \emph{a priori} and are learned by iteratively interacting with the other side of participants. All these works are based on explore-then-commit (ETC) and upper confidence bound (UCB) algorithms, two common strategies in multi-armed bandits (MAB). Thompson sampling (TS) is another popular approach, which attracts lots of attention due to its easier implementation and better empirical performances. In many problems, even when UCB and ETC-type algorithms have already been analyzed, researchers are still trying to study TS for its benefits. However, the convergence analysis of TS is much more challenging and remains open in many problem settings. In this paper, we provide the first regret analysis for TS in the new setting of iterative matching markets. Extensive experiments demonstrate the practical advantages of the TS-type algorithm over the ETC and UCB-type baselines. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:228:" <a href="http://arxiv.org/find/cs/1/au:+Kong_F/0/1/0/all/0/1">Fang Kong</a>, <a href="http://arxiv.org/find/cs/1/au:+Yin_J/0/1/0/all/0/1">Junming Yin</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_S/0/1/0/all/0/1">Shuai Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:90;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12050";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Self-recoverable Adversarial Examples: A New Effective Protection Mechanism in Social Networks. (arXiv:2204.12050v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12050";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1256:"<p>Malicious intelligent algorithms greatly threaten the security of social users' privacy by detecting and analyzing the uploaded photos to social network platforms. The destruction to DNNs brought by the adversarial attack sparks the potential that adversarial examples serve as a new protection mechanism for privacy security in social networks. However, the existing adversarial example does not have recoverability for serving as an effective protection mechanism. To address this issue, we propose a recoverable generative adversarial network to generate self-recoverable adversarial examples. By modeling the adversarial attack and recovery as a united task, our method can minimize the error of the recovered examples while maximizing the attack ability, resulting in better recoverability of adversarial examples. To further boost the recoverability of these examples, we exploit a dimension reducer to optimize the distribution of adversarial perturbation. The experimental results prove that the adversarial examples generated by the proposed method present superior recoverability, attack ability, and robustness on different datasets and network architectures, which ensure its effectiveness as a protection mechanism in social networks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:315:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jiawei Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">Jinwei Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_H/0/1/0/all/0/1">Hao Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Luo_X/0/1/0/all/0/1">Xiangyang Luo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:91;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12052";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"Pretraining Chinese BERT for Detecting Word Insertion and Deletion Errors. (arXiv:2204.12052v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12052";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1256:"<p>Chinese BERT models achieve remarkable progress in dealing with grammatical errors of word substitution. However, they fail to handle word insertion and deletion because BERT assumes the existence of a word at each position. To address this, we present a simple and effective Chinese pretrained model. The basic idea is to enable the model to determine whether a word exists at a particular position. We achieve this by introducing a special token \texttt{[null]}, the prediction of which stands for the non-existence of a word. In the training stage, we design pretraining tasks such that the model learns to predict \texttt{[null]} and real words jointly given the surrounding context. In the inference stage, the model readily detects whether a word should be inserted or deleted with the standard masked language modeling function. We further create an evaluation dataset to foster research on word insertion and deletion. It includes human-annotated corrections for 7,726 erroneous sentences. Results show that existing Chinese BERT performs poorly on detecting insertion and deletion errors. Our approach significantly improves the F1 scores from 24.1\% to 78.1\% for word insertion and from 26.5\% to 68.5\% for word deletion, respectively. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:541:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_C/0/1/0/all/0/1">Cong Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Dai_Y/0/1/0/all/0/1">Yong Dai</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_D/0/1/0/all/0/1">Duyu Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_E/0/1/0/all/0/1">Enbo Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Feng_Z/0/1/0/all/0/1">Zhangyin Feng</a>, <a href="http://arxiv.org/find/cs/1/au:+Kuang_L/0/1/0/all/0/1">Li Kuang</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_S/0/1/0/all/0/1">Shuming Shi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:92;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12055";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"Faster Fundamental Graph Algorithms via Learned Predictions. (arXiv:2204.12055v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12055";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1254:"<p>We consider the question of speeding up classic graph algorithms with machine-learned predictions. In this model, algorithms are furnished with extra advice learned from past or similar instances. Given the additional information, we aim to improve upon the traditional worst-case run-time guarantees. Our contributions are the following: </p> <p>(i) We give a faster algorithm for minimum-weight bipartite matching via learned duals, improving the recent result by Dinitz, Im, Lavastida, Moseley and Vassilvitskii (NeurIPS, 2021); </p> <p>(ii) We extend the learned dual approach to the single-source shortest path problem (with negative edge lengths), achieving an almost linear runtime given sufficiently accurate predictions which improves upon the classic fastest algorithm due to Goldberg (SIAM J. Comput., 1995); </p> <p>(iii) We provide a general reduction-based framework for learning-based graph algorithms, leading to new algorithms for degree-constrained subgraph and minimum-cost $0$-$1$ flow, based on reductions to bipartite matching and the shortest path problem. </p> <p>Finally, we give a set of general learnability theorems, showing that the predictions required by our algorithms can be efficiently learned in a PAC fashion. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:328:" <a href="http://arxiv.org/find/cs/1/au:+Chen_J/0/1/0/all/0/1">Justin Y. Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Silwal_S/0/1/0/all/0/1">Sandeep Silwal</a>, <a href="http://arxiv.org/find/cs/1/au:+Vakilian_A/0/1/0/all/0/1">Ali Vakilian</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_F/0/1/0/all/0/1">Fred Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:93;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12057";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:55:"Privacy-Utility Trade-Off. (arXiv:2204.12057v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12057";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:878:"<p>In this paper, we investigate the privacy-utility trade-off (PUT) problem, which considers the minimal privacy loss at a fixed expense of utility. Several different kinds of privacy in the PUT problem are studied, including differential privacy, approximate differential privacy, maximal information, maximal leakage, Renyi differential privacy, Sibson mutual information and mutual information. The average Hamming distance is used to measure the distortion caused by the privacy mechanism. We consider two scenarios: global privacy and local privacy. In the framework of global privacy framework, the privacy-distortion function is upper-bounded by the privacy loss of a special mechanism, and lower-bounded by the optimal privacy loss with any possible prior input distribution. In the framework of local privacy, we generalize a coloring method for the PUT problem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:153:" <a href="http://arxiv.org/find/cs/1/au:+Zhong_H/0/1/0/all/0/1">Hao Zhong</a>, <a href="http://arxiv.org/find/cs/1/au:+Bu_K/0/1/0/all/0/1">Kaifeng Bu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:94;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12061";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"PLOD: An Abbreviation Detection Dataset for Scientific Documents. (arXiv:2204.12061v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12061";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1007:"<p>The detection and extraction of abbreviations from unstructured texts can help to improve the performance of Natural Language Processing tasks, such as machine translation and information retrieval. However, in terms of publicly available datasets, there is not enough data for training deep-neural-networks-based models to the point of generalising well over data. This paper presents PLOD, a large-scale dataset for abbreviation detection and extraction that contains 160k+ segments automatically annotated with abbreviations and their long forms. We performed manual validation over a set of instances and a complete automatic validation for this dataset. We then used it to generate several baseline models for detecting abbreviations and long forms. The best models achieved an F1-score of 0.92 for abbreviations and 0.89 for detecting their corresponding long forms. We release this dataset along with our code and all the models publicly in https://github.com/surrey-nlp/AbbreviationDetRepo. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:425:" <a href="http://arxiv.org/find/cs/1/au:+Zilio_L/0/1/0/all/0/1">Leonardo Zilio</a>, <a href="http://arxiv.org/find/cs/1/au:+Saadany_H/0/1/0/all/0/1">Hadeel Saadany</a>, <a href="http://arxiv.org/find/cs/1/au:+Sharma_P/0/1/0/all/0/1">Prashant Sharma</a>, <a href="http://arxiv.org/find/cs/1/au:+Kanojia_D/0/1/0/all/0/1">Diptesh Kanojia</a>, <a href="http://arxiv.org/find/cs/1/au:+Orasan_C/0/1/0/all/0/1">Constantin Orasan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:95;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12062";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"Scheduling Virtual Conferences Fairly: Achieving Equitable Participant and Speaker Satisfaction. (arXiv:2204.12062v1 [cs.HC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12062";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1402:"<p>Recently, almost all conferences have moved to virtual mode due to the pandemic-induced restrictions on travel and social gathering. Contrary to in-person conferences, virtual conferences face the challenge of efficiently scheduling talks, accounting for the availability of participants from different timezones and their interests in attending different talks. A natural objective for conference organizers is to maximize efficiency, e.g., total expected audience participation across all talks. However, we show that optimizing for efficiency alone can result in an unfair virtual conference schedule, where individual utilities for participants and speakers can be highly unequal. To address this, we formally define fairness notions for participants and speakers, and derive suitable objectives to account for them. As the efficiency and fairness objectives can be in conflict with each other, we propose a joint optimization framework that allows conference organizers to design schedules that balance (i.e., allow trade-offs) among efficiency, participant fairness and speaker fairness objectives. While the optimization problem can be solved using integer programming to schedule smaller conferences, we provide two scalable techniques to cater to bigger conferences. Extensive evaluations over multiple real-world datasets show the efficacy and flexibility of our proposed approaches. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:433:" <a href="http://arxiv.org/find/cs/1/au:+Patro_G/0/1/0/all/0/1">Gourab K. Patro</a>, <a href="http://arxiv.org/find/cs/1/au:+Jana_P/0/1/0/all/0/1">Prithwish Jana</a>, <a href="http://arxiv.org/find/cs/1/au:+Chakraborty_A/0/1/0/all/0/1">Abhijnan Chakraborty</a>, <a href="http://arxiv.org/find/cs/1/au:+Gummadi_K/0/1/0/all/0/1">Krishna P. Gummadi</a>, <a href="http://arxiv.org/find/cs/1/au:+Ganguly_N/0/1/0/all/0/1">Niloy Ganguly</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:96;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12063";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"A Review-aware Graph Contrastive Learning Framework for Recommendation. (arXiv:2204.12063v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12063";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1850:"<p>Most modern recommender systems predict users preferences with two components: user and item embedding learning, followed by the user-item interaction modeling. By utilizing the auxiliary review information accompanied with user ratings, many of the existing review-based recommendation models enriched user/item embedding learning ability with historical reviews or better modeled user-item interactions with the help of available user-item target reviews. Though significant progress has been made, we argue that current solutions for review-based recommendation suffer from two drawbacks. First, as review-based recommendation can be naturally formed as a user-item bipartite graph with edge features from corresponding user-item reviews, how to better exploit this unique graph structure for recommendation? Second, while most current models suffer from limited user behaviors, can we exploit the unique self-supervised signals in the review-aware graph to guide two recommendation components better? To this end, in this paper, we propose a novel Review-aware Graph Contrastive Learning (RGCL) framework for review-based recommendation. Specifically, we first construct a review-aware user-item graph with feature-enhanced edges from reviews, where each edge feature is composed of both the user-item rating and the corresponding review semantics. This graph with feature-enhanced edges can help attentively learn each neighbor node weight for user and item representation learning. After that, we design two additional contrastive learning tasks (i.e., Node Discrimination and Edge Discrimination) to provide self-supervised signals for the two components in recommendation process. Finally, extensive experiments over five benchmark datasets demonstrate the superiority of our proposed RGCL compared to the state-of-the-art baselines. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:533:" <a href="http://arxiv.org/find/cs/1/au:+Shuai_J/0/1/0/all/0/1">Jie Shuai</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_K/0/1/0/all/0/1">Kun Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_L/0/1/0/all/0/1">Le Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_P/0/1/0/all/0/1">Peijie Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Hong_R/0/1/0/all/0/1">Richang Hong</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_M/0/1/0/all/0/1">Meng Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yong Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:97;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12064";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:118:"PP-MARL: Efficient Privacy-Preserving MARL for Cooperative Intelligence in Communication. (arXiv:2204.12064v1 [cs.MA])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12064";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1223:"<p>Artificial intelligence (AI) has been introduced in communication networks and services to improve efficiency via self-optimization. Cooperative intelligence (CI), also known as collective intelligence and collaborative intelligence, is expected to become an integral element in next-generation networks because it can aggregate the capabilities and intelligence of multiple devices. However, privacy issues may intimidate, obstruct, and hinder the deployment of CI in practice because collaboration heavily relies on data and information sharing. Additional practical constraints in communication (e.g., limited bandwidth) further limit the performance of CI. To overcome these challenges, we propose PP-MARL, an efficient privacy-preserving learning scheme based on multi-agent reinforcement learning (MARL). We apply and evaluate our scheme in two communication-related use cases: mobility management in drone-assisted communication and network control with edge intelligence. Simulation results reveal that the proposed scheme can achieve efficient and reliable collaboration with 1.1-6 times better privacy protection and lower overheads (e.g., 84-91% reduction in bandwidth) than state-of-the-art approaches. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:241:" <a href="http://arxiv.org/find/cs/1/au:+Yuan_T/0/1/0/all/0/1">Tingting Yuan</a>, <a href="http://arxiv.org/find/cs/1/au:+Chung_H/0/1/0/all/0/1">Hwei-Ming Chung</a>, <a href="http://arxiv.org/find/cs/1/au:+Fu_X/0/1/0/all/0/1">Xiaoming Fu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:98;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12067";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"An Overview of Recent Work in Media Forensics: Methods and Threats. (arXiv:2204.12067v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12067";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:430:"<p>In this paper, we review recent work in media forensics for digital images, video, audio (specifically speech), and documents. For each data modality, we discuss synthesis and manipulation techniques that can be used to create and modify digital media. We then review technological advancements for detecting and quantifying such manipulations. Finally, we consider open issues and suggest directions for future research. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:598:" <a href="http://arxiv.org/find/cs/1/au:+Bhagtani_K/0/1/0/all/0/1">Kratika Bhagtani</a>, <a href="http://arxiv.org/find/cs/1/au:+Yadav_A/0/1/0/all/0/1">Amit Kumar Singh Yadav</a>, <a href="http://arxiv.org/find/cs/1/au:+Bartusiak_E/0/1/0/all/0/1">Emily R. Bartusiak</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiang_Z/0/1/0/all/0/1">Ziyue Xiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Shao_R/0/1/0/all/0/1">Ruiting Shao</a>, <a href="http://arxiv.org/find/cs/1/au:+Baireddy_S/0/1/0/all/0/1">Sriram Baireddy</a>, <a href="http://arxiv.org/find/cs/1/au:+Delp_E/0/1/0/all/0/1">Edward J. Delp</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:99;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12069";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:127:"Suggesting Relevant Questions for a Query Using Statistical Natural Language Processing Technique. (arXiv:2204.12069v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12069";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:991:"<p>Suggesting similar questions for a user query has many applications ranging from reducing search time of users on e-commerce websites, training of employees in companies to holistic learning for students. The use of Natural Language Processing techniques for suggesting similar questions is prevalent over the existing architecture. Mainly two approaches are studied for finding text similarity namely syntactic and semantic, however each has its draw-backs and fail to provide the desired outcome. In this article, a self-learning combined approach is proposed for determining textual similarity that introduces a robust weighted syntactic and semantic similarity index for determining similar questions from a predetermined database, this approach learns the optimal combination of the mentioned approaches for a database under consideration. Comprehensive analysis has been carried out to justify the efficiency and efficacy of the proposed approach over the existing literature. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:513:" <a href="http://arxiv.org/find/cs/1/au:+Nayak_S/0/1/0/all/0/1">Shriniwas Nayak</a>, <a href="http://arxiv.org/find/cs/1/au:+Kanetkar_A/0/1/0/all/0/1">Anuj Kanetkar</a>, <a href="http://arxiv.org/find/cs/1/au:+Hirudkar_H/0/1/0/all/0/1">Hrushabh Hirudkar</a>, <a href="http://arxiv.org/find/cs/1/au:+Ghotkar_A/0/1/0/all/0/1">Archana Ghotkar</a>, <a href="http://arxiv.org/find/cs/1/au:+Sonawane_S/0/1/0/all/0/1">Sheetal Sonawane</a>, <a href="http://arxiv.org/find/cs/1/au:+Litake_O/0/1/0/all/0/1">Onkar Litake</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:100;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12070";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"Symlink: A New Dataset for Scientific Symbol-Description Linking. (arXiv:2204.12070v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12070";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:618:"<p>Mathematical symbols and descriptions appear in various forms across document section boundaries without explicit markup. In this paper, we present a new large-scale dataset that emphasizes extracting symbols and descriptions in scientific documents. Symlink annotates scientific papers of 5 different domains (i.e., computer science, biology, physics, mathematics, and economics). Our experiments on Symlink demonstrate the challenges of the symbol-description linking task for existing models and call for further research effort in this area. We will publicly release Symlink to facilitate future research. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:349:" <a href="http://arxiv.org/find/cs/1/au:+Lai_V/0/1/0/all/0/1">Viet Dac Lai</a>, <a href="http://arxiv.org/find/cs/1/au:+Veyseh_A/0/1/0/all/0/1">Amir Pouran Ben Veyseh</a>, <a href="http://arxiv.org/find/cs/1/au:+Dernoncourt_F/0/1/0/all/0/1">Franck Dernoncourt</a>, <a href="http://arxiv.org/find/cs/1/au:+Nguyen_T/0/1/0/all/0/1">Thien Huu Nguyen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:101;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12071";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Modeling the Noticeability of User-Avatar Movement Inconsistency for Sense of Body Ownership Intervention. (arXiv:2204.12071v1 [cs.HC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12071";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1570:"<p>An avatar mirroring the user's movement is commonly adopted in Virtual Reality(VR). Maintaining the user-avatar movement consistency provides the user a sense of body ownership and thus an immersive experience. However, breaking this consistency can enable new interaction functionalities, such as pseudo haptic feedback or input augmentation, at the expense of immersion. We propose to quantify the probability of users noticing the movement inconsistency while the inconsistency amplitude is being enlarged, which aims to guide the intervention of the users' sense of body ownership in VR. We applied angular offsets to the avatar's shoulder and elbow joints and recorded whether the user identified the inconsistency through a series of three user studies and built a statistical model based on the results. Results show that the noticeability of movement inconsistency increases roughly quadratically with the enlargement of offsets and the offsets at two joints negatively affect the probability distributions of each other. Leveraging the model, we implemented a technique that amplifies the user's arm movements with unnoticeable offsets and then evaluated implementations with different parameters(offset strength, offset distribution). Results show that the technique with medium-level and balanced-distributed offsets achieves the best overall performance. Finally, we demonstrated our model's extendability in interventions in the sense of body ownership with three VR applications including stroke rehabilitation, action game and widget arrangement. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:621:" <a href="http://arxiv.org/find/cs/1/au:+Li_Z/0/1/0/all/0/1">Zhipeng Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Y/0/1/0/all/0/1">Yu Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_Y/0/1/0/all/0/1">Yihao Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_R/0/1/0/all/0/1">Ruijia Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_R/0/1/0/all/0/1">Ruolin Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yuntao Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yan_Y/0/1/0/all/0/1">Yukang Yan</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_Y/0/1/0/all/0/1">Yuanchun Shi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:102;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12072";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Know Thy Student: Interactive Learning with Gaussian Processes. (arXiv:2204.12072v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12072";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1549:"<p>Learning often involves interaction between multiple agents. Human teacher-student settings best illustrate how interactions result in efficient knowledge passing where the teacher constructs a curriculum based on their students' abilities. Prior work in machine teaching studies how the teacher should construct optimal teaching datasets assuming the teacher knows everything about the student. However, in the real world, the teacher doesn't have complete information about the student. The teacher must interact and diagnose the student, before teaching. Our work proposes a simple diagnosis algorithm which uses Gaussian processes for inferring student-related information, before constructing a teaching dataset. We apply this to two settings. One is where the student learns from scratch and the teacher must figure out the student's learning algorithm parameters, eg. the regularization parameters in ridge regression or support vector machines. Two is where the student has partially explored the environment and the teacher must figure out the important areas the student has not explored; we study this in the offline reinforcement learning setting where the teacher must provide demonstrations to the student and avoid sending redundant trajectories. Our experiments highlight the importance of diagosing before teaching and demonstrate how students can learn more efficiently with the help of an interactive teacher. We conclude by outlining where diagnosing combined with teaching would be more desirable than passive learning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:235:" <a href="http://arxiv.org/find/cs/1/au:+Wang_R/0/1/0/all/0/1">Rose E. Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_M/0/1/0/all/0/1">Mike Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Goodman_N/0/1/0/all/0/1">Noah Goodman</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:103;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12073";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"One-pass additive-error subset selection for $\ell_{p}$ subspace approximation. (arXiv:2204.12073v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12073";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1302:"<p>We consider the problem of subset selection for $\ell_{p}$ subspace approximation, that is, to efficiently find a \emph{small} subset of data points such that solving the problem optimally for this subset gives a good approximation to solving the problem optimally for the original input. Previously known subset selection algorithms based on volume sampling and adaptive sampling \cite{DeshpandeV07}, for the general case of $p \in [1, \infty)$, require multiple passes over the data. In this paper, we give a one-pass subset selection with an additive approximation guarantee for $\ell_{p}$ subspace approximation, for any $p \in [1, \infty)$. Earlier subset selection algorithms that give a one-pass multiplicative $(1+\epsilon)$ approximation work under the special cases. Cohen \textit{et al.} \cite{CohenMM17} gives a one-pass subset section that offers multiplicative $(1+\epsilon)$ approximation guarantee for the special case of $\ell_{2}$ subspace approximation. Mahabadi \textit{et al.} \cite{MahabadiRWZ20} gives a one-pass \emph{noisy} subset selection with $(1+\epsilon)$ approximation guarantee for $\ell_{p}$ subspace approximation when $p \in \{1, 2\}$. Our subset selection algorithm gives a weaker, additive approximation guarantee, but it works for any $p \in [1, \infty)$. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:172:" <a href="http://arxiv.org/find/cs/1/au:+Deshpande_A/0/1/0/all/0/1">Amit Deshpande</a>, <a href="http://arxiv.org/find/cs/1/au:+Pratap_R/0/1/0/all/0/1">Rameshwar Pratap</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:104;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12076";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"ATST: Audio Representation Learning with Teacher-Student Transformer. (arXiv:2204.12076v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12076";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:805:"<p>Self-supervised learning (SSL) learns knowledge from a large amount of unlabeled data, and then transfers the knowledge to a specific problem with a limited number of labeled data. SSL has achieved promising results in various domains. This work addresses the problem of segment-level general audio SSL, and proposes a new transformer-based teacher-student SSL model, named ATST. A transformer encoder is developed on a recently emerged teacher-student baseline scheme, which largely improves the modeling capability of pre-training. In addition, a new strategy for positive pair creation is designed to fully leverage the capability of transformer. Extensive experiments have been conducted, and the proposed model achieves the new state-of-the-art results on almost all of the downstream tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:152:" <a href="http://arxiv.org/find/eess/1/au:+Li_X/0/1/0/all/0/1">Xian Li</a>, <a href="http://arxiv.org/find/eess/1/au:+Li_X/0/1/0/all/0/1">Xiaofei Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:105;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:121:"AAU-net: An Adaptive Attention U-net for Breast Lesions Segmentation in Ultrasound Images. (arXiv:2204.12077v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12077";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1576:"<p>Various deep learning methods have been proposed to segment breast lesion from ultrasound images. However, similar intensity distributions, variable tumor morphology and blurred boundaries present challenges for breast lesions segmentation, especially for malignant tumors with irregular shapes. Considering the complexity of ultrasound images, we develop an adaptive attention U-net (AAU-net) to segment breast lesions automatically and stably from ultrasound images. Specifically, we introduce a hybrid adaptive attention module, which mainly consists of a channel self-attention block and a spatial self-attention block, to replace the traditional convolution operation. Compared with the conventional convolution operation, the design of the hybrid adaptive attention module can help us capture more features under different receptive fields. Different from existing attention mechanisms, the hybrid adaptive attention module can guide the network to adaptively select more robust representation in channel and space dimensions to cope with more complex breast lesions segmentation. Extensive experiments with several state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets show that our method has better performance on breast lesion segmentation. Furthermore, robustness analysis and external experiments demonstrate that our proposed AAU-net has better generalization performance on the segmentation of breast lesions. Moreover, the hybrid adaptive attention module can be flexibly applied to existing network frameworks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:322:" <a href="http://arxiv.org/find/eess/1/au:+Chen_G/0/1/0/all/0/1">Gongping Chen</a>, <a href="http://arxiv.org/find/eess/1/au:+Dai_Y/0/1/0/all/0/1">Yu Dai</a>, <a href="http://arxiv.org/find/eess/1/au:+Zhang_J/0/1/0/all/0/1">Jianxun Zhang</a>, <a href="http://arxiv.org/find/eess/1/au:+Yap_M/0/1/0/all/0/1">Moi Hoon Yap</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:106;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12079";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Exact Wirelength of Embedding 3-Ary n-Cubes into certain Cylinders and Trees. (arXiv:2204.12079v1 [cs.DM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12079";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:678:"<p>Graph embeddings play a significant role in the design and analysis of parallel algorithms. It is a mapping of the topological structure of a guest graph G into a host graph H, which is represented as a one-to-one mapping from the vertex set of the guest graph to the vertex set of the host graph. In multiprocessing systems the interconnection networks enhance the efficient communication between the components in the system. Obtaining minimum wirelength in embedding problems is significant in the designing of network and simulating one architecture by another. In this paper, we determine the wirelength of embedding 3-ary n-cubes into cylinders and certain trees. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:154:" <a href="http://arxiv.org/find/cs/1/au:+S_R/0/1/0/all/0/1">Rajeshwari S</a>, <a href="http://arxiv.org/find/cs/1/au:+Rajesh_M/0/1/0/all/0/1">M Rajesh</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:107;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12081";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:127:"Cyber-Physical Vulnerability Assessment of P2P Energy Exchanges in Active Distribution Networks. (arXiv:2204.12081v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12081";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1166:"<p>Owing to the decreasing costs of distributed energy resources (DERs) as well as decarbonization policies, power systems are undergoing a modernization process. The large deployment of DERs together with internet of things (IoT) devices provide a platform for peer-to-peer (P2P) energy trading in active distribution networks. However, P2P energy trading with IoT devices have driven the grid more vulnerable to cyber-physical threats. To this end, in this paper, a resilience-oriented P2P energy exchange model is developed considering three phase unbalanced distribution systems. In addition, various scenarios for vulnerability assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide false information regarding the price and quantity with the goal of maximum financial benefit and system operation disruption, are considered. Techno-economic survivability analysis against these attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits, and cause financial loss of other agents. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:157:" <a href="http://arxiv.org/find/eess/1/au:+Haggi_H/0/1/0/all/0/1">Hamed Haggi</a>, <a href="http://arxiv.org/find/eess/1/au:+Sun_W/0/1/0/all/0/1">Wei Sun</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:108;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12084";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"U-Net with ResNet Backbone for Garment Landmarking Purpose. (arXiv:2204.12084v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12084";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:482:"<p>We build a heatmap-based landmark detection model to locate important landmarks on 2D RGB garment images. The main goal is to detect edges, corners and suitable interior region of the garments. This let us re-create 3D garments in modern 3D editing software by incorporate landmark detection model and texture unwrapping. We use a U-net architecture with ResNet backbone to build the model. With an appropriate loss function, we are able to train a moderately robust model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:81:" <a href="http://arxiv.org/find/cs/1/au:+Hong_K/0/1/0/all/0/1">Khay Boon Hong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:109;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12085";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Time Series Prediction by Multi-task GPR with Spatiotemporal Information Transformation. (arXiv:2204.12085v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12085";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1082:"<p>Making an accurate prediction of an unknown system only from a short-term time series is difficult due to the lack of sufficient information, especially in a multi-step-ahead manner. However, a high-dimensional short-term time series contains rich dynamical information, and also becomes increasingly available in many fields. In this work, by exploiting spatiotemporal information (STI) transformation scheme that transforms such high-dimensional/spatial information to temporal information, we developed a new method called MT-GPRMachine to achieve accurate prediction from a short-term time series. Specifically, we first construct a specific multi-task GPR which is multiple linked STI mappings to transform high dimensional/spatial information into temporal/dynamical information of any given target variable, and then makes multi step-ahead prediction of the target variable by solving those STI mappings. The multi-step-ahead prediction results on various synthetic and real-world datasets clearly validated that MT-GPRMachine outperformed other existing approaches. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:308:" <a href="http://arxiv.org/find/cs/1/au:+Tao_P/0/1/0/all/0/1">Peng Tao</a>, <a href="http://arxiv.org/find/cs/1/au:+Hao_X/0/1/0/all/0/1">Xiaohu Hao</a>, <a href="http://arxiv.org/find/cs/1/au:+Cheng_J/0/1/0/all/0/1">Jie Cheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_L/0/1/0/all/0/1">Luonan Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:110;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12088";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"A physics-informed deep neural network for surrogate modeling in classical elasto-plasticity. (arXiv:2204.12088v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12088";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1485:"<p>In this work, we present a deep neural network architecture that can efficiently approximate classical elasto-plastic constitutive relations. The network is enriched with crucial physics aspects of classical elasto-plasticity, including additive decomposition of strains into elastic and plastic parts, and nonlinear incremental elasticity. This leads to a Physics-Informed Neural Network (PINN) surrogate model named here as Elasto-Plastic Neural Network (EPNN). Detailed analyses show that embedding these physics into the architecture of the neural network facilitates a more efficient training of the network with less training data, while also enhancing the extrapolation capability for loading regimes outside the training data. The architecture of EPNN is model and material-independent, i.e. it can be adapted to a wide range of elasto-plastic material types, including geomaterials and metals; and experimental data can potentially be directly used in training the network. To demonstrate the robustness of the proposed architecture, we adapt its general framework to the elasto-plastic behavior of sands. We use synthetic data generated from material point simulations based on a relatively advanced dilatancy-based constitutive model for granular materials to train the neural network. The superiority of EPNN over regular neural network architectures is explored through predicting unseen strain-controlled loading paths for sands with different initial densities. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:252:" <a href="http://arxiv.org/find/cs/1/au:+Eghbalian_M/0/1/0/all/0/1">Mahdad Eghbalian</a>, <a href="http://arxiv.org/find/cs/1/au:+Pouragha_M/0/1/0/all/0/1">Mehdi Pouragha</a>, <a href="http://arxiv.org/find/cs/1/au:+Wan_R/0/1/0/all/0/1">Richard Wan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:111;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12089";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Acquiring a Dynamic Light Field through a Single-Shot Coded Image. (arXiv:2204.12089v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12089";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1111:"<p>We propose a method for compressively acquiring a dynamic light field (a 5-D volume) through a single-shot coded image (a 2-D measurement). We designed an imaging model that synchronously applies aperture coding and pixel-wise exposure coding within a single exposure time. This coding scheme enables us to effectively embed the original information into a single observed image. The observed image is then fed to a convolutional neural network (CNN) for light-field reconstruction, which is jointly trained with the camera-side coding patterns. We also developed a hardware prototype to capture a real 3-D scene moving over time. We succeeded in acquiring a dynamic light field with 5x5 viewpoints over 4 temporal sub-frames (100 views in total) from a single observed image. Repeating capture and reconstruction processes over time, we can acquire a dynamic light field at 4x the frame rate of the camera. To our knowledge, our method is the first to achieve a finer temporal resolution than the camera itself in compressive light-field acquisition. Our software is available from our project webpage </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:525:" <a href="http://arxiv.org/find/eess/1/au:+Mizuno_R/0/1/0/all/0/1">Ryoya Mizuno</a>, <a href="http://arxiv.org/find/eess/1/au:+Takahashi_K/0/1/0/all/0/1">Keita Takahashi</a>, <a href="http://arxiv.org/find/eess/1/au:+Yoshida_M/0/1/0/all/0/1">Michitaka Yoshida</a>, <a href="http://arxiv.org/find/eess/1/au:+Tsutake_C/0/1/0/all/0/1">Chihiro Tsutake</a>, <a href="http://arxiv.org/find/eess/1/au:+Fujii_T/0/1/0/all/0/1">Toshiaki Fujii</a>, <a href="http://arxiv.org/find/eess/1/au:+Nagahara_H/0/1/0/all/0/1">Hajime Nagahara</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:112;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12092";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"Mask scalar prediction for improving robust automatic speech recognition. (arXiv:2204.12092v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12092";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1102:"<p>Using neural network based acoustic frontends for improving robustness of streaming automatic speech recognition (ASR) systems is challenging because of the causality constraints and the resulting distortion that the frontend processing introduces in speech. Time-frequency masking based approaches have been shown to work well, but they need additional hyper-parameters to scale the mask to limit speech distortion. Such mask scalars are typically hand-tuned and chosen conservatively. In this work, we present a technique to predict mask scalars using an ASR-based loss in an end-to-end fashion, with minimal increase in the overall model size and complexity. We evaluate the approach on two robust ASR tasks: multichannel enhancement in the presence of speech and non-speech noise, and acoustic echo cancellation (AEC). Results show that the presented algorithm consistently improves word error rate (WER) without the need for any additional tuning over strong baselines that use hand-tuned hyper-parameters: up to 16% for multichannel enhancement in noisy conditions, and up to 7% for AEC. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:443:" <a href="http://arxiv.org/find/eess/1/au:+Narayanan_A/0/1/0/all/0/1">Arun Narayanan</a>, <a href="http://arxiv.org/find/eess/1/au:+Walker_J/0/1/0/all/0/1">James Walker</a>, <a href="http://arxiv.org/find/eess/1/au:+Panchapagesan_S/0/1/0/all/0/1">Sankaran Panchapagesan</a>, <a href="http://arxiv.org/find/eess/1/au:+Howard_N/0/1/0/all/0/1">Nathan Howard</a>, <a href="http://arxiv.org/find/eess/1/au:+Koizumi_Y/0/1/0/all/0/1">Yuma Koizumi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:113;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12093";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:99:"Approach to Predicting News -- A Precise Multi-LSTM Network With BERT. (arXiv:2204.12093v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12093";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1907:"<p>Varieties of Democracy (V-Dem) is a new approach to conceptualizing and measuring democracy and politics. It has information for 200 countries and is one of the biggest databases for political science. According to the V-Dem annual democracy report 2019, Taiwan is one of the two countries that got disseminated false information from foreign governments the most. It also shows that the "made-up news" has caused a great deal of confusion in Taiwanese society and has serious impacts on global stability. Although there are several applications helping distinguish the false information, we found out that the pre-processing of categorizing the news is still done by human labor. However, human labor may cause mistakes and cannot work for a long time. The growing demands for automatic machines in the near decades show that while the machine can do as good as humans or even better, using machines can reduce humans' burden and cut down costs. Therefore, in this work, we build a predictive model to classify the category of news. The corpora we used contains 28358 news and 200 news scraped from the online newspaper Liberty Times Net (LTN) website and includes 8 categories: Technology, Entertainment, Fashion, Politics, Sports, International, Finance, and Health. At first, we use Bidirectional Encoder Representations from Transformers (BERT) for word embeddings which transform each Chinese character into a (1,768) vector. Then, we use a Long Short-Term Memory (LSTM) layer to transform word embeddings into sentence embeddings and add another LSTM layer to transform them into document embeddings. Each document embedding is an input for the final predicting model, which contains two Dense layers and one Activation layer. And each document embedding is transformed into 1 vector with 8 real numbers, then the highest one will correspond to the 8 news categories with up to 99% accuracy. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:568:" <a href="http://arxiv.org/find/cs/1/au:+Chen_C/0/1/0/all/0/1">Chia-Lin Chen</a> (1), <a href="http://arxiv.org/find/cs/1/au:+Huang_P/0/1/0/all/0/1">Pei-Yu Huang</a> (2), <a href="http://arxiv.org/find/cs/1/au:+Huang_Y/0/1/0/all/0/1">Yi-Ting Huang</a> (3), <a href="http://arxiv.org/find/cs/1/au:+Lin_C/0/1/0/all/0/1">Chun Lin</a> (3) ((1) Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, (2) Management and Digital Innovation, University of London, Singapore, (3) Institute of Information Science, Academia Sinica, Taipei, Taiwan)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:114;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12095";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:81:"PyGOD: A Python Library for Graph Outlier Detection. (arXiv:2204.12095v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12095";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:796:"<p>PyGOD is an open-source Python library for detecting outliers on graph data. As the first comprehensive library of its kind, PyGOD supports a wide array of leading graph-based methods for node-, edge-, subgraph-, and graph-level outlier detection, under a unified, well-documented API designed for use by both researchers and practitioners. To overcome the scalability issue in large graphs, we provide advanced functionalities for selected models, including mini-batch and sampling. PyGOD is equipped with best practices to foster code reliability and maintainability, including unit testing, continuous integration, and code coverage. To foster accessibility, PyGOD is released under a permissive BSD-license at https://github.com/pygod-team/pygod/ and the Python Package Index (PyPI). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:1008:" <a href="http://arxiv.org/find/cs/1/au:+Liu_K/0/1/0/all/0/1">Kay Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dou_Y/0/1/0/all/0/1">Yingtong Dou</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_Y/0/1/0/all/0/1">Yue Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Ding_X/0/1/0/all/0/1">Xueying Ding</a>, <a href="http://arxiv.org/find/cs/1/au:+Hu_X/0/1/0/all/0/1">Xiyang Hu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_R/0/1/0/all/0/1">Ruitong Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ding_K/0/1/0/all/0/1">Kaize Ding</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_C/0/1/0/all/0/1">Canyu Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Peng_H/0/1/0/all/0/1">Hao Peng</a>, <a href="http://arxiv.org/find/cs/1/au:+Shu_K/0/1/0/all/0/1">Kai Shu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_G/0/1/0/all/0/1">George H. Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_Z/0/1/0/all/0/1">Zhihao Jia</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_P/0/1/0/all/0/1">Philip S. Yu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:115;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12100";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Convergence of neural networks to Gaussian mixture distribution. (arXiv:2204.12100v1 [stat.ML])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12100";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:550:"<p>We give a proof that, under relatively mild conditions, fully-connected feed-forward deep random neural networks converge to a Gaussian mixture distribution as only the width of the last hidden layer goes to infinity. We conducted experiments for a simple model which supports our result. Moreover, it gives a detailed description of the convergence, namely, the growth of the last hidden layer gets the distribution closer to the Gaussian mixture, and the other layer successively get the Gaussian mixture closer to the normal distribution. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:256:" <a href="http://arxiv.org/find/stat/1/au:+Asao_Y/0/1/0/all/0/1">Yasuhiko Asao</a>, <a href="http://arxiv.org/find/stat/1/au:+Sakamoto_R/0/1/0/all/0/1">Ryotaro Sakamoto</a>, <a href="http://arxiv.org/find/stat/1/au:+Takagi_S/0/1/0/all/0/1">Shiro Takagi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:116;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12103";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"Centimeter-level Positioning by Instantaneous Lidar-aided GNSS Ambiguity Resolution. (arXiv:2204.12103v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12103";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1277:"<p>High-precision vehicle positioning is key to the implementation of modern driving systems in urban environments. Global Navigation Satellite System (GNSS) carrier phase measurements can provide millimeter- to centimeter-level positioning, provided that the integer ambiguities are correctly resolved. Abundant code measurements are often used to facilitate integer ambiguity resolution (IAR), however, they suffer from signal blockage and multipath in urban canyons. In this contribution, a lidar-aided instantaneous ambiguity resolution method is proposed. Lidar measurements, in the form of 3D keypoints, are generated by a learning-based point cloud registration method using a pre-built HD map and integrated with GNSS observations in a mixed measurement model to produce precise float solutions, which in turn increase the ambiguity success rate. Closed-form expressions of the ambiguity variance matrix and the associated Ambiguity Dilution of Precision (ADOP) are developed to provide a priori evaluation of such lidar-aided ambiguity resolution performance. Both analytical and experimental results show that the proposed method enables successful instantaneous IAR with limited GNSS satellites and frequencies, leading to centimeter-level vehicle positioning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:263:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Junjie Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Khodabandeh_A/0/1/0/all/0/1">Amir Khodabandeh</a>, <a href="http://arxiv.org/find/cs/1/au:+Khoshelham_K/0/1/0/all/0/1">Kourosh Khoshelham</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:117;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12105";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:82:"Learning Dual-Pixel Alignment for Defocus Deblurring. (arXiv:2204.12105v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12105";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1744:"<p>It is a challenging task to recover all-in-focus image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite existing DP defocus deblurring methods achieving impressive results, they directly take naive concatenation of DP views as input, while neglecting the disparity between left and right views in the regions out of camera's depth of field (DoF). In this work, we propose a Dual-Pixel Alignment Network (DPANet) for defocus deblurring. Generally, DPANet is an encoder-decoder with skip-connections, where two branches with shared parameters in the encoder are employed to extract and align deep features from left and right views, and one decoder is adopted to fuse aligned features for predicting the all-in-focus image. Due to that DP views suffer from different blur amounts, it is not trivial to align left and right views. To this end, we propose novel encoder alignment module (EAM) and decoder alignment module (DAM). In particular, a correlation layer is suggested in EAM to measure the disparity between DP views, whose deep features can then be accordingly aligned using deformable convolutions. And DAM can further enhance the alignment of skip-connected features from encoder and deep features in decoder. By introducing several EAMs and DAMs, DP views in DPANet can be well aligned for better predicting latent all-in-focus image. Experimental results on real-world datasets show that our DPANet is notably superior to state-of-the-art deblurring methods in reducing defocus blur while recovering visually plausible sharp structures and textures. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:376:" <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yu Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Yi_Y/0/1/0/all/0/1">Yaling Yi</a>, <a href="http://arxiv.org/find/cs/1/au:+Ren_D/0/1/0/all/0/1">Dongwei Ren</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Q/0/1/0/all/0/1">Qince Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Zuo_W/0/1/0/all/0/1">Wangmeng Zuo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:118;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12106";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"Razumikhin and Krasovskii Approaches for Safe Stabilization. (arXiv:2204.12106v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12106";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1240:"<p>This paper studies the stabilization and safety problems of nonlinear time-delay systems. Following both Razumikhin and Krasovskii approaches, we propose novel control Lyapunov functions/functionals for the stabilization problem and novel control barrier functions/functionals for the safety problem. The proposed control Lyapunov and barrier functions/functionals extend the existing ones from the delay-free case to the time-delay case, and allow for designing the stabilizing and safety controllers in closed-form. Since analytical solutions to time-delay optimal control problems are hard to be achieved, a sliding mode control based approach is developed to merge the proposed control Lyapunov and barrier functions/functionals. Based on the sliding surface functional, a feedback control law is established to investigate the stabilization and safety objectives simultaneously. In particular, the properties of the sliding surface functional are analyzed, and further how to construct the sliding surface functional is discussed. Finally, the proposed approaches are illustrated via two numerical examples from the connected cruise control problem of automotive systems and the synchronization problem of multi-agent systems. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:263:" <a href="http://arxiv.org/find/eess/1/au:+Ren_W/0/1/0/all/0/1">Wei Ren</a>, <a href="http://arxiv.org/find/eess/1/au:+Jungers_R/0/1/0/all/0/1">Raphael M. Jungers</a>, <a href="http://arxiv.org/find/eess/1/au:+Dimarogonas_D/0/1/0/all/0/1">Dimos V. Dimarogonas</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:119;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12108";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:136:"Toward Consistent and Efficient Map-based Visual-inertial Localization: Theory Framework and Filter Design. (arXiv:2204.12108v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12108";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1166:"<p>This paper focuses on designing a consistent and efficient filter for map-based visual-inertial localization. First, we propose a new Lie group with its algebra, based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of the map information, the proposed invariant EKF can naturally maintain the correct observability properties of the system. To consider the uncertainty of the map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of the map information can be taken into consideration to avoid over-confident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of the map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:396:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Zhuqing Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Song_Y/0/1/0/all/0/1">Yang Song</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_S/0/1/0/all/0/1">Shoudong Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiong_R/0/1/0/all/0/1">Rong Xiong</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yue Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:120;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12109";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"Instance-Specific Feature Propagation for Referring Segmentation. (arXiv:2204.12109v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12109";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1289:"<p>Referring segmentation aims to generate a segmentation mask for the target instance indicated by a natural language expression. There are typically two kinds of existing methods: one-stage methods that directly perform segmentation on the fused vision and language features; and two-stage methods that first utilize an instance segmentation model for instance proposal and then select one of these instances via matching them with language features. In this work, we propose a novel framework that simultaneously detects the target-of-interest via feature propagation and generates a fine-grained segmentation mask. In our framework, each instance is represented by an Instance-Specific Feature (ISF), and the target-of-referring is identified by exchanging information among all ISFs using our proposed Feature Propagation Module (FPM). Our instance-aware approach learns the relationship among all objects, which helps to better locate the target-of-interest than one-stage methods. Comparing to two-stage methods, our approach collaboratively and interactively utilizes both vision and language information for synchronous identification and segmentation. In the experimental tests, our method outperforms previous state-of-the-art methods on all three RefCOCO series datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:236:" <a href="http://arxiv.org/find/cs/1/au:+Liu_C/0/1/0/all/0/1">Chang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_X/0/1/0/all/0/1">Xudong Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ding_H/0/1/0/all/0/1">Henghui Ding</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:121;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12111";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Function-words Enhanced Attention Networks for Few-Shot Inverse Relation Classification. (arXiv:2204.12111v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12111";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1031:"<p>The relation classification is to identify semantic relations between two entities in a given text. While existing models perform well for classifying inverse relations with large datasets, their performance is significantly reduced for few-shot learning. In this paper, we propose a function words adaptively enhanced attention framework (FAEA) for few-shot inverse relation classification, in which a hybrid attention model is designed to attend class-related function words based on meta-learning. As the involvement of function words brings in significant intra-class redundancy, an adaptive message passing mechanism is introduced to capture and transfer inter-class differences.We mathematically analyze the negative impact of function words from dot-product measurement, which explains why message passing mechanism effectively reduces the impact. Our experimental results show that FAEA outperforms strong baselines, especially the inverse relation accuracy is improved by 14.33% under 1-shot setting in FewRel1.0. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:395:" <a href="http://arxiv.org/find/cs/1/au:+Dou_C/0/1/0/all/0/1">Chunliu Dou</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_S/0/1/0/all/0/1">Shaojuan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_X/0/1/0/all/0/1">Xiaowang Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Feng_Z/0/1/0/all/0/1">Zhiyong Feng</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_K/0/1/0/all/0/1">Kewen Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:122;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12112";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"Reformulating Speaker Diarization as Community Detection With Emphasis On Topological Structure. (arXiv:2204.12112v1 [cs.SD])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12112";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1225:"<p>Clustering-based speaker diarization has stood firm as one of the major approaches in reality, despite recent development in end-to-end diarization. However, clustering methods have not been explored extensively for speaker diarization. Commonly-used methods such as k-means, spectral clustering, and agglomerative hierarchical clustering only take into account properties such as proximity and relative densities. In this paper we propose to view clustering-based diarization as a community detection problem. By doing so the topological structure is considered. This work has four major contributions. First it is shown that Leiden community detection algorithm significantly outperforms the previous methods on the clustering of speaker-segments. Second, we propose to use uniform manifold approximation to reduce dimension while retaining global and local topological structure. Third, a masked filtering approach is introduced to extract "clean" speaker embeddings. Finally, the community structure is applied to an end-to-end post-processing network to obtain diarization results. The final system presents a relative DER reduction of up to 70 percent. The breakdown contribution of each component is analyzed. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:156:" <a href="http://arxiv.org/find/cs/1/au:+Zheng_S/0/1/0/all/0/1">Siqi Zheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Suo_H/0/1/0/all/0/1">Hongbin Suo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:123;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12115";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"Fast Successive-Cancellation Decoding of Polar Codes with Sequence Nodes. (arXiv:2204.12115v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12115";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1240:"<p>Due to the sequential nature of the successive-cancellation (SC) algorithm, the decoding of polar codes suffers from significant decoding latencies. Fast SC decoding is able to speed up the SC decoding process, by implementing parallel decoders at the intermediate levels of the SC decoding tree for some special nodes with specific information and frozen bit patterns. To further improve the parallelism of SC decoding, this paper present a new class of special node composed of a sequence of rate one or single-parity-check (SR1/SPC) nodes, which envelops a wide variety of existing special node types. Then, we analyse the parity constraints caused by the frozen bits in each descendant node, such that the decoding performance of the SR1/SPC node can be preserved once the parity constraints are satisfied. Finally, a generalized fast SC decoding algorithm is proposed for the SR1/SPC node, where the corresponding parity constraints are taken into consideration. Simulation results show that compared with the state-of-the-art fast SC decoding algorithms, the proposed decoding algorithm achieves a higher degree of parallelism, especially for high-rate polar codes, without tangibly altering the error-correction performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:309:" <a href="http://arxiv.org/find/cs/1/au:+Lu_Y/0/1/0/all/0/1">Yang Lu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_M/0/1/0/all/0/1">Ming-Min Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Lei_M/0/1/0/all/0/1">Ming Lei</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_M/0/1/0/all/0/1">Min-Jian Zhao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:124;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12117";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"On an Invariance Problem for Parameterized Concurrent Systems. (arXiv:2204.12117v1 [cs.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12117";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1093:"<p>We consider concurrent systems consisting of replicated finite-state processes that synchronize via joint interactions in a network with user-defined topology. The system is specified using a resource logic with a multiplicative connective and inductively defined predicates, reminiscent of Separation Logic. The problem we consider is if a given formula in this logic defines an invariant, namely whether any model of the formula, following an arbitrary firing sequence of interactions, is transformed into another model of the same formula. This property, called \emph{havoc invariance}, is quintessential in proving the correctness of reconfiguration programs that change the structure of the network at runtime. We show that the havoc invariance problem is many-one reducible to the entailment problem $\phi \models \psi$, asking if any model of $\phi$ is also a model of $\psi$. Although, in general, havoc invariance is found to be undecidable, this reduction allows to prove that havoc invariance is in 2EXP, for a general fragment of the logic, with a 2EXP entailment problem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:239:" <a href="http://arxiv.org/find/cs/1/au:+Bozga_M/0/1/0/all/0/1">Marius Bozga</a>, <a href="http://arxiv.org/find/cs/1/au:+Bueri_L/0/1/0/all/0/1">Lucas Bueri</a>, <a href="http://arxiv.org/find/cs/1/au:+Iosif_R/0/1/0/all/0/1">Radu Iosif</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:125;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12120";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Automated Generation of High-Performance Computational Fluid Dynamics Codes. (arXiv:2204.12120v1 [cs.MS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12120";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:873:"<p>Domain-Specific Languages (DSLs) improve programmers productivity by decoupling problem descriptions from algorithmic implementations. However, DSLs for High-Performance Computing (HPC) have two critical non-functional requirements: performance and scalability. This paper presents the automated process of generating, from abstract mathematical specifications of Computational Fluid Dynamics (CFD) problems, optimised parallel codes that perform and scale as manually optimised ones. We consciously combine within Saiph, a DSL for solving CFD problem, low-level optimisations and parallelization strategies, enabling high-performance single-core executions which effectively scale to multi-core and distributed environments. Our results demonstrate how high-level DSLs can offer competitive performance by transparently leveraging state-of-the-art HPC techniques. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:381:" <a href="http://arxiv.org/find/cs/1/au:+Macia_S/0/1/0/all/0/1">Sandra Macià</a>, <a href="http://arxiv.org/find/cs/1/au:+Martiinez_Ferrer_P/0/1/0/all/0/1">Pedro J. Martıínez-Ferrer</a>, <a href="http://arxiv.org/find/cs/1/au:+Ayguade_E/0/1/0/all/0/1">Eduard Ayguadé</a>, <a href="http://arxiv.org/find/cs/1/au:+Beltran_V/0/1/0/all/0/1">Vicenç Beltran</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:126;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12121";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Cross-media Scientific Research Achievements Query based on Ranking Learning. (arXiv:2204.12121v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12121";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1114:"<p>With the advent of the information age, the scale of data on the Internet is getting larger and larger, and it is full of text, images, videos, and other information. Different from social media data and news data, scientific research achievements information has the characteristics of many proper nouns and strong ambiguity. The traditional single-mode query method based on keywords can no longer meet the needs of scientific researchers and managers of the Ministry of Science and Technology. Scientific research project information and scientific research scholar information contain a large amount of valuable scientific research achievement information. Evaluating the output capability of scientific research projects and scientific research teams can effectively assist managers in decision-making. In view of the above background, this paper expounds on the research status from four aspects: characteristic learning of scientific research results, cross-media research results query, ranking learning of scientific research results, and cross-media scientific research achievement query system. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:230:" <a href="http://arxiv.org/find/cs/1/au:+Wang_B/0/1/0/all/0/1">Benzhi Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_M/0/1/0/all/0/1">Meiyu Liang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_A/0/1/0/all/0/1">Ang Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:127;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12125";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"A Robust Contrastive Alignment Method For Multi-Domain Text Classification. (arXiv:2204.12125v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12125";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1064:"<p>Multi-domain text classification can automatically classify texts in various scenarios. Due to the diversity of human languages, texts with the same label in different domains may differ greatly, which brings challenges to the multi-domain text classification. Current advanced methods use the private-shared paradigm, capturing domain-shared features by a shared encoder, and training a private encoder for each domain to extract domain-specific features. However, in realistic scenarios, these methods suffer from inefficiency as new domains are constantly emerging. In this paper, we propose a robust contrastive alignment method to align text classification features of various domains in the same feature space by supervised contrastive learning. By this means, we only need two universal feature extractors to achieve multi-domain text classification. Extensive experimental results show that our method performs on par with or sometimes better than the state-of-the-art method, which uses the complex multi-classifier in a private-shared framework. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:623:" <a href="http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1">Xuefeng Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Lei_H/0/1/0/all/0/1">Hao Lei</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_L/0/1/0/all/0/1">Liwen Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Dong_G/0/1/0/all/0/1">Guanting Dong</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_J/0/1/0/all/0/1">Jinzheng Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_J/0/1/0/all/0/1">Jiachi Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_W/0/1/0/all/0/1">Weiran Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_C/0/1/0/all/0/1">Chunyun Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:128;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12129";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:70:"Mirror Games Against an Open Book Player. (arXiv:2204.12129v1 [cs.CC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12129";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1069:"<p>Mirror games were invented by Garg and Schnieder (ITCS 2019). Alice and Bob take turns (with Alice playing first) in declaring numbers from the set {1,2, ...2n}. If a player picks a number that was previously played, that player loses and the other player wins. If all numbers are declared without repetition, the result is a draw. Bob has a simple mirror strategy that assures he won't lose and requires no memory. On the other hand, Garg and Schenier showed that every deterministic Alice needs memory of size linear in $n$ in order to secure a draw. </p> <p>Regarding probabilistic strategies, previous work showed that a model where Alice has access to a secret random perfect matching over {1,2, ...2n} allows her to achieve a draw in the game w.p. a least 1-1/n and using only polylog bits of memory. </p> <p>We show that the requirement for secret bits is crucial: for an `open book' Alice with no secrets (Bob knows her memory but not future coin flips) and memory of at most n/4c bits for any c>2, there is a Bob that wins w.p. close to 1-2^{-c/2}. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:155:" <a href="http://arxiv.org/find/cs/1/au:+Magen_R/0/1/0/all/0/1">Roey Magen</a>, <a href="http://arxiv.org/find/cs/1/au:+Naor_M/0/1/0/all/0/1">Moni Naor</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:129;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12130";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:131:"LM-Debugger: An Interactive Tool for Inspection and Intervention in Transformer-Based Language Models. (arXiv:2204.12130v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12130";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1242:"<p>The opaque nature and unexplained behavior of transformer-based language models (LMs) have spurred a wide interest in interpreting their predictions. However, current interpretation methods mostly focus on probing models from outside, executing behavioral tests, and analyzing salience input features, while the internal prediction construction process is largely not understood. In this work, we introduce LM-Debugger, an interactive debugger tool for transformer-based LMs, which provides a fine-grained interpretation of the model's internal prediction process, as well as a powerful framework for intervening in LM behavior. For its backbone, LM-Debugger relies on a recent method that interprets the inner token representations and their updates by the feed-forward layers in the vocabulary space. We demonstrate the utility of LM-Debugger for single-prediction debugging, by inspecting the internal disambiguation process done by GPT2. Moreover, we show how easily LM-Debugger allows to shift model behavior in a direction of the user's choice, by identifying a few vectors in the network and inducing effective interventions to the prediction process. We release LM-Debugger as an open-source tool and a demo over GPT2 models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:638:" <a href="http://arxiv.org/find/cs/1/au:+Geva_M/0/1/0/all/0/1">Mor Geva</a>, <a href="http://arxiv.org/find/cs/1/au:+Caciularu_A/0/1/0/all/0/1">Avi Caciularu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dar_G/0/1/0/all/0/1">Guy Dar</a>, <a href="http://arxiv.org/find/cs/1/au:+Roit_P/0/1/0/all/0/1">Paul Roit</a>, <a href="http://arxiv.org/find/cs/1/au:+Sadde_S/0/1/0/all/0/1">Shoval Sadde</a>, <a href="http://arxiv.org/find/cs/1/au:+Shlain_M/0/1/0/all/0/1">Micah Shlain</a>, <a href="http://arxiv.org/find/cs/1/au:+Tamir_B/0/1/0/all/0/1">Bar Tamir</a>, <a href="http://arxiv.org/find/cs/1/au:+Goldberg_Y/0/1/0/all/0/1">Yoav Goldberg</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:130;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12133";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"Non-determinsitic algebraic rewriting as adjunction. (arXiv:2204.12133v1 [math.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12133";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:721:"<p>We develop a general model theoretic semantics to rewriting beyond the usual confluence and termination assumptions. This is based on preordered algebra which is a model theory that extends many sorted algebra. In this framework we characterise rewriting in arbitrary algebras rather than term algebras (called algebraic rewriting) as a persistent adjunction and use this result, on the one hand for proving the soundness and the completeness of an abstract computational model of rewriting that underlies the non-deterministic programming with Maude and CafeOBJ, and on the other hand for developing a compositionality result for algebraic rewriting in the context of the pushout-based modularisation technique. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:98:" <a href="http://arxiv.org/find/math/1/au:+Diaconescu_R/0/1/0/all/0/1">Răzvan Diaconescu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:131;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12139";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Neural Maximum A Posteriori Estimation on Unpaired Data for Motion Deblurring. (arXiv:2204.12139v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12139";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1335:"<p>Real-world dynamic scene deblurring has long been a challenging task since paired blurry-sharp training data is unavailable. Conventional Maximum A Posteriori estimation and deep learning-based deblurring methods are restricted by handcrafted priors and synthetic blurry-sharp training pairs respectively, thereby failing to generalize to real dynamic blurriness. To this end, we propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data. The proposed NeruMAP consists of a motion estimation network and a deblurring network which are trained jointly to model the (re)blurring process (i.e. likelihood function). Meanwhile, the motion estimation network is trained to explore the motion information in images by applying implicit dynamic motion prior, and in return enforces the deblurring network training (i.e. providing sharp image prior). The proposed NeurMAP is an orthogonal approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets. Experiments demonstrate our superiority on both quantitative metrics and visual quality over state-of-the-art methods. Codes are available on https://github.com/yjzhang96/NeurMAP-deblur. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:239:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Y/0/1/0/all/0/1">Youjian Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_C/0/1/0/all/0/1">Chaoyue Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_D/0/1/0/all/0/1">Dacheng Tao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:132;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12143";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Deeper Insights into ViTs Robustness towards Common Corruptions. (arXiv:2204.12143v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12143";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1137:"<p>Recent literature have shown design strategies from Convolutions Neural Networks (CNNs) benefit Vision Transformers (ViTs) in various vision tasks. However, it remains unclear how these design choices impact on robustness when transferred to ViTs. In this paper, we make the first attempt to investigate how CNN-like architectural designs and CNN-based data augmentation strategies impact on ViTs' robustness towards common corruptions through an extensive and rigorous benchmarking. We demonstrate that overlapping patch embedding and convolutional Feed-Forward Network (FFN) boost performance on robustness. Furthermore, adversarial noise training is powerful on ViTs while fourier-domain augmentation fails. Moreover, we introduce a novel conditional method enabling input-varied augmentations from two angles: (1) Generating dynamic augmentation parameters conditioned on input images. It conduces to state-of-the-art performance on robustness through conditional convolutions; (2) Selecting most suitable augmentation strategy by an extra predictor helps to achieve the best trade-off between clean accuracy and robustness. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:376:" <a href="http://arxiv.org/find/cs/1/au:+Tian_R/0/1/0/all/0/1">Rui Tian</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_Z/0/1/0/all/0/1">Zuxuan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dai_Q/0/1/0/all/0/1">Qi Dai</a>, <a href="http://arxiv.org/find/cs/1/au:+Hu_H/0/1/0/all/0/1">Han Hu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Y/0/1/0/all/0/1">Yugang Jiang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:133;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12144";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Motion Planning and Robust Tracking for the Heat Equation using Boundary Control. (arXiv:2204.12144v1 [math.OC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12144";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1467:"<p>Robust output tracking is addressed in this paper for a heat equation with Neumann boundary conditions and anti-collocated boundary input and output. The desired reference tracking is solved using the well-known flatness and Lyapunov approaches. The reference profile is obtained by solving the motion planning problem for the nominal plant. To robustify the closed-loop system in the presence of the disturbances and uncertainties, it is then augmented with PI feedback plus a discontinuous component responsible for rejecting matched disturbances with \textit{a priori} known magnitude bounds. Such control law only requires the information of the system at the same boundary as the control input is located. The resulting dynamic controller globally exponentially stabilizes the error dynamics while also attenuating the influence of Lipschitz-in-time external disturbances and parameter uncertainties. For the case when the motion planning is performed over the uncertain plant, an exponential Input-to-State Stability is obtained, preserving the boundedness of the tracking error norm. The proposed controller relies on a discontinuous term that however passes through an integrator, thereby minimizing the chattering effect in the plant dynamics. The performance of the closed-loop system, thus designed, is illustrated in simulations under different kinds of reference trajectories in the presence of external disturbances and parameter uncertainties. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:366:" <a href="http://arxiv.org/find/math/1/au:+Gutierrez_Oribio_D/0/1/0/all/0/1">Diego Gutiérrez-Oribio</a>, <a href="http://arxiv.org/find/math/1/au:+Orlov_Y/0/1/0/all/0/1">Yury Orlov</a>, <a href="http://arxiv.org/find/math/1/au:+Stefanou_I/0/1/0/all/0/1">Ioannis Stefanou</a>, <a href="http://arxiv.org/find/math/1/au:+Plestan_F/0/1/0/all/0/1">Franck Plestan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:134;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12148";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Morest: Model-based RESTful API Testing with Execution Feedback. (arXiv:2204.12148v1 [cs.SE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12148";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1380:"<p>RESTful APIs are arguably the most popular endpoints for accessing Web services. Blackbox testing is one of the emerging techniques for ensuring the reliability of RESTful APIs. The major challenge in testing RESTful APIs is the need for correct sequences of API operation calls for in-depth testing. To build meaningful operation call sequences, researchers have proposed techniques to learn and utilize the API dependencies based on OpenAPI specifications. However, these techniques either lack the overall awareness of how all the APIs are connected or the flexibility of adaptively fixing the learned knowledge. In this paper, we propose Morest, a model-based RESTful API testing technique that builds and maintains a dynamically updating RESTful-service Property Graph (RPG) to model the behaviors of RESTful-services and guide the call sequence generation. We empirically evaluated Morest and the results demonstrate that Morest can successfully request an average of 152.66%-232.45% more API operations, cover 26.16%-103.24% more lines of code, and detect 40.64%-215.94% more bugs than state-of-the-art techniques. In total, we applied Morest to 6 real-world projects and found 44 bugs (13 of them cannot be detected by existing approaches). Specifically, 2 of the confirmed bugs are from Bitbucket, a famous code management service with more than 6 million users. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:682:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yi Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yuekang Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_G/0/1/0/all/0/1">Gelei Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wan_R/0/1/0/all/0/1">Ruiyuan Wan</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_R/0/1/0/all/0/1">Runchao Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Ji_D/0/1/0/all/0/1">Dandan Ji</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_S/0/1/0/all/0/1">Shiheng Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Bao_M/0/1/0/all/0/1">Minli Bao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:135;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12150";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"Where and What: Driver Attention-based Object Detection. (arXiv:2204.12150v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12150";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1038:"<p>Human drivers use their attentional mechanisms to focus on critical objects and make decisions while driving. As human attention can be revealed from gaze data, capturing and analyzing gaze information has emerged in recent years to benefit autonomous driving technology. Previous works in this context have primarily aimed at predicting "where" human drivers look at and lack knowledge of "what" objects drivers focus on. Our work bridges the gap between pixel-level and object-level attention prediction. Specifically, we propose to integrate an attention prediction module into a pretrained object detection framework and predict the attention in a grid-based style. Furthermore, critical objects are recognized based on predicted attended-to areas. We evaluate our proposed method on two driver attention datasets, BDD-A and DR(eye)VE. Our framework achieves competitive state-of-the-art performance in the attention prediction on both pixel-level and object-level but is far more efficient (75.3 GFLOPs less) in computation. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:342:" <a href="http://arxiv.org/find/cs/1/au:+Rong_Y/0/1/0/all/0/1">Yao Rong</a>, <a href="http://arxiv.org/find/cs/1/au:+Kassautzki_N/0/1/0/all/0/1">Naemi-Rebecca Kassautzki</a>, <a href="http://arxiv.org/find/cs/1/au:+Fuhl_W/0/1/0/all/0/1">Wolfgang Fuhl</a>, <a href="http://arxiv.org/find/cs/1/au:+Kasneci_E/0/1/0/all/0/1">Enkelejda Kasneci</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:136;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12151";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"ClothFormer:Taming Video Virtual Try-on in All Module. (arXiv:2204.12151v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12151";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1549:"<p>The task of video virtual try-on aims to fit the target clothes to a person in the video with spatio-temporal consistency. Despite tremendous progress of image virtual try-on, they lead to inconsistency between frames when applied to videos. Limited work also explored the task of video-based virtual try-on but failed to produce visually pleasing and temporally coherent results. Moreover, there are two other key challenges: 1) how to generate accurate warping when occlusions appear in the clothing region; 2) how to generate clothes and non-target body parts (e.g. arms, neck) in harmony with the complicated background; To address them, we propose a novel video virtual try-on framework, ClothFormer, which successfully synthesizes realistic, harmonious, and spatio-temporal consistent results in complicated environment. In particular, ClothFormer involves three major modules. First, a two-stage anti-occlusion warping module that predicts an accurate dense flow mapping between the body regions and the clothing regions. Second, an appearance-flow tracking module utilizes ridge regression and optical flow correction to smooth the dense flow sequence and generate a temporally smooth warped clothing sequence. Third, a dual-stream transformer extracts and fuses clothing textures, person features, and environment information to generate realistic try-on videos. Through rigorous experiments, we demonstrate that our method highly surpasses the baselines in terms of synthesized video quality both qualitatively and quantitatively. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:307:" <a href="http://arxiv.org/find/cs/1/au:+Jiang_J/0/1/0/all/0/1">Jianbin Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_T/0/1/0/all/0/1">Tan Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yan_H/0/1/0/all/0/1">He Yan</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_J/0/1/0/all/0/1">Junhui Liu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:137;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12153";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Cybertwin-enabled 6G Space-air-ground Integrated Networks: Architecture, Open Issue, and Challenges. (arXiv:2204.12153v1 [cs.NI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12153";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1156:"<p>Space-air-ground integrated network (SAGIN) is considered as a core requirement in emerging 6G networks, which integrates the terrestrial and non-terrestrial networks to reach the full network coverage and ubiquitous services. To envision the ubiquitous intelligence and the deep integration in 6G SAGIN, a paradigm of cybertwin-enabled 6G SAGIN is presented in this paper. Specifically, a cybertwin-enabled SAGIN architecture is first presented, where a novel five-dimension digital twin (DT) model is presented. Particularly, three categories of critical technologies are presented based on the cybertwin of SAGIN, i.e., cybertwin-based multi-source heterogeneous network integration, cybertwin-based integrated cloud-edge-end, and cybertwin-based integrated sensing-communication-computing. Besides, two open issues in the cybertwin-enabled SAGIN are studied, i.e., the networking decision and optimization and the cybertwin-enabled cross-layer privacy and security, where the challenges are discussed and the potential solutions are directed. In addition, a case study with federal learning is developed and open research issues are discussed. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:388:" <a href="http://arxiv.org/find/cs/1/au:+Yin_Z/0/1/0/all/0/1">Zhisheng Yin</a>, <a href="http://arxiv.org/find/cs/1/au:+Luan_T/0/1/0/all/0/1">Tom H. Luan</a>, <a href="http://arxiv.org/find/cs/1/au:+Cheng_N/0/1/0/all/0/1">Nan Cheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Hui_Y/0/1/0/all/0/1">Yilong Hui</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_W/0/1/0/all/0/1">Wei Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:138;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12155";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:78:"Bias-Variance Decompositions for Margin Losses. (arXiv:2204.12155v1 [stat.ML])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12155";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:802:"<p>We introduce a novel bias-variance decomposition for a range of strictly convex margin losses, including the logistic loss (minimized by the classic LogitBoost algorithm), as well as the squared margin loss and canonical boosting loss. Furthermore, we show that, for all strictly convex margin losses, the expected risk decomposes into the risk of a "central" model and a term quantifying variation in the functional margin with respect to variations in the training data. These decompositions provide a diagnostic tool for practitioners to understand model overfitting/underfitting, and have implications for additive ensemble models -- for example, when our bias-variance decomposition holds, there is a corresponding "ambiguity" decomposition, which can be used to quantify model diversity. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:240:" <a href="http://arxiv.org/find/stat/1/au:+Wood_D/0/1/0/all/0/1">Danny Wood</a>, <a href="http://arxiv.org/find/stat/1/au:+Mu_T/0/1/0/all/0/1">Tingting Mu</a>, <a href="http://arxiv.org/find/stat/1/au:+Brown_G/0/1/0/all/0/1">Gavin Brown</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:139;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12156";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Source-independent quantum random number generator against detector blinding attacks. (arXiv:2204.12156v1 [quant-ph])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12156";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1020:"<p>Randomness, mainly in the form of random numbers, is the fundamental prerequisite for the security of many cryptographic tasks. Quantum randomness can be extracted even if adversaries are fully aware of the protocol and even control the randomness source. However, an adversary can further manipulate the randomness via detector blinding attacks, which are a hacking attack suffered by protocols with trusted detectors. Here, by treating no-click events as valid error events, we propose a quantum random number generation protocol that can simultaneously address source vulnerability and ferocious detector blinding attacks. The method can be extended to high-dimensional random number generation. We experimentally demonstrate the ability of our protocol to generate random numbers for two-dimensional measurement with a generation speed of 0.515 Mbps, which is two orders of magnitude higher than that of device-independent protocols that can address both issues of imperfect sources and imperfect detectors. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:670:" <a href="http://arxiv.org/find/quant-ph/1/au:+Liu_W/0/1/0/all/0/1">Wen-Bo Liu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Lu_Y/0/1/0/all/0/1">Yu-Shuo Lu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Fu_Y/0/1/0/all/0/1">Yao Fu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Huang_S/0/1/0/all/0/1">Si-Cheng Huang</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yin_Z/0/1/0/all/0/1">Ze-Jie Yin</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Jiang_K/0/1/0/all/0/1">Kun Jiang</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yin_H/0/1/0/all/0/1">Hua-Lei Yin</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Chen_Z/0/1/0/all/0/1">Zeng-Bing Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:140;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12158";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:101:"Mixed Strategies for Security Games with General Defending Requirements. (arXiv:2204.12158v1 [cs.GT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12158";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1378:"<p>The Stackelberg security game is played between a defender and an attacker, where the defender needs to allocate a limited amount of resources to multiple targets in order to minimize the loss due to adversarial attack by the attacker. While allowing targets to have different values, classic settings often assume uniform requirements to defend the targets. This enables existing results that study mixed strategies (randomized allocation algorithms) to adopt a compact representation of the mixed strategies. </p> <p>In this work, we initiate the study of mixed strategies for the security games in which the targets can have different defending requirements. In contrast to the case of uniform defending requirement, for which an optimal mixed strategy can be computed efficiently, we show that computing the optimal mixed strategy is NP-hard for the general defending requirements setting. However, we show that strong upper and lower bounds for the optimal mixed strategy defending result can be derived. We propose an efficient close-to-optimal Patching algorithm that computes mixed strategies that use only few pure strategies. We also study the setting when the game is played on a network and resource sharing is enabled between neighboring targets. Our experimental results demonstrate the effectiveness of our algorithm in several large real-world datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:460:" <a href="http://arxiv.org/find/cs/1/au:+Bai_R/0/1/0/all/0/1">Rufan Bai</a>, <a href="http://arxiv.org/find/cs/1/au:+Lin_H/0/1/0/all/0/1">Haoxing Lin</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_X/0/1/0/all/0/1">Xinyu Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_X/0/1/0/all/0/1">Xiaowei Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_M/0/1/0/all/0/1">Minming Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_W/0/1/0/all/0/1">Weijia Jia</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:141;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12159";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary Algorithm for Symbolic Regression. (arXiv:2204.12159v1 [cs.NE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12159";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1376:"<p>Currently, the genetic programming version of the gene-pool optimal mixing evolutionary algorithm (GP-GOMEA) is among the top-performing algorithms for symbolic regression (SR). A key strength of GP-GOMEA is its way of performing variation, which dynamically adapts to the emergence of patterns in the population. However, GP-GOMEA lacks a mechanism to optimize coefficients. In this paper, we study how fairly simple approaches for optimizing coefficients can be integrated into GP-GOMEA. In particular, we considered two variants of Gaussian coefficient mutation. We performed experiments using different settings on 23 benchmark problems, and used machine learning to estimate what aspects of coefficient mutation matter most. We find that the most important aspect is that the number of coefficient mutation attempts needs to be commensurate with the number of mixing operations that GP-GOMEA performs. We applied GP-GOMEA with the best-performing coefficient mutation approach to the data sets of SRBench, a large SR benchmark, for which a ground-truth underlying equation is known. We find that coefficient mutation can help re-discovering the underlying equation by a substantial amount, but only when no noise is added to the target variable. In the presence of noise, GP-GOMEA with coefficient mutation discovers alternative but similarly-accurate equations. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/cs/1/au:+Virgolin_M/0/1/0/all/0/1">Marco Virgolin</a>, <a href="http://arxiv.org/find/cs/1/au:+Bosman_P/0/1/0/all/0/1">Peter A. N. Bosman</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:142;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12160";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"A Reduced Order Model for Joint Assemblies by Hyper-Reduction and Model-Driven Sampling. (arXiv:2204.12160v1 [cs.CE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12160";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1633:"<p>The dynamic behavior of jointed assemblies exhibiting friction nonlinearities features amplitude-dependent dissipation and stiffness. To develop numerical simulations for predictive and design purposes, macro-scale High Fidelity Models (HFMs) of the contact interfaces are required. However, the high computational cost of such HFMs impedes the feasibility of the simulations. To this end, we propose a model-driven method for constructing hyper-reduced order models of such assemblies. Focusing on steady-state analysis, we use the Multi-Harmonic Balance Method (MHBM) to formulate the equations of motion in frequency domain. The reduction basis is constructed through solving a set of vibration problems corresponding to fictitious interface conditions. Subsequently, a Galerkin projection reduces the order of the model. Nonetheless, the necessary fine discretization of the interfaces represents a bottleneck for achieving high speedups. For this reason, we implement an adapted Energy Conserving Weighing and Sampling (ECSW) technique for Hyper Reduction (HR), thereby allowing significant speedups for meshes of arbitrary fineness. This feature is particularly advantageous since analysts typically encounter a trade-off between accuracy and computational cost when deciding on the mesh size, whose estimation is particularly challenging for problems of this type. To assess the accuracy of our method without resorting to the HF solution, we propose an error indicator with thresholds that have proven reliable in our analyses. Finally, the accuracy and efficiency of the method are demonstrated by two case studies. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:242:" <a href="http://arxiv.org/find/cs/1/au:+Morsy_A/0/1/0/all/0/1">Ahmed Amr Morsy</a>, <a href="http://arxiv.org/find/cs/1/au:+Kast_M/0/1/0/all/0/1">Mariella Kast</a>, <a href="http://arxiv.org/find/cs/1/au:+Tiso_P/0/1/0/all/0/1">Paolo Tiso</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:143;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12162";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"Budgeted Out-tree Maximization with Submodular Prizes. (arXiv:2204.12162v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12162";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1728:"<p>We consider a variant of the prize collecting Steiner tree problem in which we are given a \emph{directed graph} $D=(V,A)$, a monotone submodular prize function $p:2^V \rightarrow \mathbb{R}^+ \cup \{0\}$, a cost function $c:V \rightarrow \mathbb{Z}^{+}$, a root vertex $r \in V$, and a budget $B$. The aim is to find an out-subtree $T$ of $D$ rooted at $r$ that costs at most $B$ and maximizes the prize function. We call this problem \emph{Directed Rooted Submodular Out-tree} (\textbf{DRSO}). </p> <p>Very recently, Ghuge and Nagarajan [SODA\ 2020] gave a quasi-polynomial-time $O\left(\frac{\log n'}{\log \log n'}\right)$-approximation algorithm for the case in which the costs are associated to the edges, where $n'$ is the number of vertices in an optimal solution. </p> <p>In this paper we give a polynomial-time algorithm for \textbf{DRSO} that guarantees an approximation factor of $O(\sqrt{B}/\epsilon^3)$ at the cost of a budget violation of a factor $1+\epsilon$, for any $\epsilon \in (0,1]$. The same result holds for the edge-cost case, to our knowledge this is the first polynomial-time approximation algorithm for this case. </p> <p>We further show that the unrooted version of \textbf{DRSO} can be approximated to a factor of $O(\sqrt{B})$ without budget violation, which is an improvement over the factor $O(\Delta \sqrt{B})$ given in~[Kuo et al.\ IEEE/ACM\ Trans.\ Netw.\ 2015] for the undirected and unrooted case, where $\Delta$ is the maximum degree of the graph. Finally, we provide some new/improved approximation bounds for several related problems, including the additive-prize version of \textbf{DRSO}, the maximum budgeted connected set cover problem, and the budgeted sensor cover problem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:266:" <a href="http://arxiv.org/find/cs/1/au:+DAngelo_G/0/1/0/all/0/1">Gianlorenzo D'Angelo</a>, <a href="http://arxiv.org/find/cs/1/au:+Delfaraz_E/0/1/0/all/0/1">Esmaeil Delfaraz</a>, <a href="http://arxiv.org/find/cs/1/au:+Gilbert_H/0/1/0/all/0/1">Hugo Gilbert</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:144;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12164";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets. (arXiv:2204.12164v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12164";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1429:"<p>Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:250:" <a href="http://arxiv.org/find/cs/1/au:+Mohr_I/0/1/0/all/0/1">Isabelle Mohr</a>, <a href="http://arxiv.org/find/cs/1/au:+Wuhrl_A/0/1/0/all/0/1">Amelie Wührl</a>, <a href="http://arxiv.org/find/cs/1/au:+Klinger_R/0/1/0/all/0/1">Roman Klinger</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:145;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12165";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:114:"When do Contrastive Word Alignments Improve Many-to-many Neural Machine Translation?. (arXiv:2204.12165v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12165";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:888:"<p>Word alignment has proven to benefit many-to-many neural machine translation (NMT). However, high-quality ground-truth bilingual dictionaries were used for pre-editing in previous methods, which are unavailable for most language pairs. Meanwhile, the contrastive objective can implicitly utilize automatically learned word alignment, which has not been explored in many-to-many NMT. This work proposes a word-level contrastive objective to leverage word alignments for many-to-many NMT. Empirical results show that this leads to 0.8 BLEU gains for several language pairs. Analyses reveal that in many-to-many NMT, the encoder's sentence retrieval performance highly correlates with the translation quality, which explains when the proposed method impacts translation. This motivates future exploration for many-to-many NMT to improve the encoder's sentence retrieval performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:476:" <a href="http://arxiv.org/find/cs/1/au:+Mao_Z/0/1/0/all/0/1">Zhuoyuan Mao</a>, <a href="http://arxiv.org/find/cs/1/au:+Chu_C/0/1/0/all/0/1">Chenhui Chu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dabre_R/0/1/0/all/0/1">Raj Dabre</a>, <a href="http://arxiv.org/find/cs/1/au:+Song_H/0/1/0/all/0/1">Haiyue Song</a>, <a href="http://arxiv.org/find/cs/1/au:+Wan_Z/0/1/0/all/0/1">Zhen Wan</a>, <a href="http://arxiv.org/find/cs/1/au:+Kurohashi_S/0/1/0/all/0/1">Sadao Kurohashi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:146;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12169";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:152:"Using Machine Learning to Fuse Verbal Autopsy Narratives and Binary Features in the Analysis of Deaths from Hyperglycaemia. (arXiv:2204.12169v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12169";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1121:"<p>Lower-and-middle income countries are faced with challenges arising from a lack of data on cause of death (COD), which can limit decisions on population health and disease management. A verbal autopsy(VA) can provide information about a COD in areas without robust death registration systems. A VA consists of structured data, combining numeric and binary features, and unstructured data as part of an open-ended narrative text. This study assesses the performance of various machine learning approaches when analyzing both the structured and unstructured components of the VA report. The algorithms were trained and tested via cross-validation in the three settings of binary features, text features and a combination of binary and text features derived from VA reports from rural South Africa. The results obtained indicate narrative text features contain valuable information for determining COD and that a combination of binary and text features improves the automated COD classification task. </p> <p>Keywords: Diabetes Mellitus, Verbal Autopsy, Cause of Death, Machine Learning, Natural Language Processing </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:325:" <a href="http://arxiv.org/find/cs/1/au:+Manaka_T/0/1/0/all/0/1">Thokozile Manaka</a>, <a href="http://arxiv.org/find/cs/1/au:+Zyl_T/0/1/0/all/0/1">Terence Van Zyl</a>, <a href="http://arxiv.org/find/cs/1/au:+Wade_A/0/1/0/all/0/1">Alisha N Wade</a>, <a href="http://arxiv.org/find/cs/1/au:+Kar_D/0/1/0/all/0/1">Deepak Kar</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:147;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12173";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"Map-based Visual-Inertial Localization: Consistency and Complexity. (arXiv:2204.12173v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12173";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1761:"<p>Drift-free localization is essential for autonomous vehicles. In this paper, we address the problem by proposing a filter-based framework, which integrates the visual-inertial odometry and the measurements of the features in the pre-built map. In this framework, the transformation between the odometry frame and the map frame is augmented into the state and estimated on the fly. Besides, we maintain only the keyframe poses in the map and employ Schmidt extended Kalman filter to update the state partially, so that the uncertainty of the map information can be consistently considered with low computational cost. Moreover, we theoretically demonstrate that the ever-changing linearization points of the estimated state can introduce spurious information to the augmented system and make the original four-dimensional unobservable subspace vanish, leading to inconsistent estimation in practice. To relieve this problem, we employ first-estimate Jacobian (FEJ) to maintain the correct observability properties of the augmented system. Furthermore, we introduce an observability-constrained updating method to compensate for the significant accumulated error after the long-term absence (can be 3 minutes and 1 km) of map-based measurements. Through simulations, the consistent estimation of our proposed algorithm is validated. Through real-world experiments, we demonstrate that our proposed algorithm runs successfully on four kinds of datasets with the lower computational cost (20% time-saving) and the better estimation accuracy (45% trajectory error reduction) compared with the baseline algorithm VINS-Fusion, whereas VINS-Fusion fails to give bounded localization performance on three of four datasets because of its inconsistent estimation. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:398:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Zhuqing Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiao_Y/0/1/0/all/0/1">Yanmei Jiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_S/0/1/0/all/0/1">Shoudong Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yue Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiong_R/0/1/0/all/0/1">Rong Xiong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:148;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12176";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"Cross Pairwise Ranking for Unbiased Item Recommendation. (arXiv:2204.12176v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12176";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1537:"<p>Most recommender systems optimize the model on observed interaction data, which is affected by the previous exposure mechanism and exhibits many biases like popularity bias. The loss functions, such as the mostly used pointwise Binary Cross-Entropy and pairwise Bayesian Personalized Ranking, are not designed to consider the biases in observed data. As a result, the model optimized on the loss would inherit the data biases, or even worse, amplify the biases. For example, a few popular items take up more and more exposure opportunities, severely hurting the recommendation quality on niche items -- known as the notorious Mathew effect. In this work, we develop a new learning paradigm named Cross Pairwise Ranking (CPR) that achieves unbiased recommendation without knowing the exposure mechanism. Distinct from inverse propensity scoring (IPS), we change the loss term of a sample -- we innovatively sample multiple observed interactions once and form the loss as the combination of their predictions. We prove in theory that this way offsets the influence of user/item propensity on the learning, removing the influence of data biases caused by the exposure mechanism. Advantageous to IPS, our proposed CPR ensures unbiased learning for each training instance without the need of setting the propensity scores. Experimental results demonstrate the superiority of CPR over state-of-the-art debiasing solutions in both model generalization and training efficiency. The codes are available at https://github.com/Qcactus/CPR. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:457:" <a href="http://arxiv.org/find/cs/1/au:+Wan_Q/0/1/0/all/0/1">Qi Wan</a>, <a href="http://arxiv.org/find/cs/1/au:+He_X/0/1/0/all/0/1">Xiangnan He</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_X/0/1/0/all/0/1">Xiang Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_J/0/1/0/all/0/1">Jiancan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Guo_W/0/1/0/all/0/1">Wei Guo</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_R/0/1/0/all/0/1">Ruiming Tang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:149;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12177";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"A Comparative Study on Approaches to Acoustic Scene Classification using CNNs. (arXiv:2204.12177v1 [cs.SD])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12177";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1019:"<p>Acoustic scene classification is a process of characterizing and classifying the environments from sound recordings. The first step is to generate features (representations) from the recorded sound and then classify the background environments. However, different kinds of representations have dramatic effects on the accuracy of the classification. In this paper, we explored the three such representations on classification accuracy using neural networks. We investigated the spectrograms, MFCCs, and embeddings representations using different CNN networks and autoencoders. Our dataset consists of sounds from three settings of indoors and outdoors environments - thus the dataset contains sound from six different kinds of environments. We found that the spectrogram representation has the highest classification accuracy while MFCC has the lowest classification accuracy. We reported our findings, insights as well as some guidelines to achieve better accuracy for environment classification using sounds. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:356:" <a href="http://arxiv.org/find/cs/1/au:+Ananya_I/0/1/0/all/0/1">Ishrat Jahan Ananya</a>, <a href="http://arxiv.org/find/cs/1/au:+Suad_S/0/1/0/all/0/1">Sarah Suad</a>, <a href="http://arxiv.org/find/cs/1/au:+Choudhury_S/0/1/0/all/0/1">Shadab Hafiz Choudhury</a>, <a href="http://arxiv.org/find/cs/1/au:+Khan_M/0/1/0/all/0/1">Mohammad Ashrafuzzaman Khan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:150;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12181";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:160:"Collaborative Target Search with a Visual Drone Swarm: An Adaptive Curriculum Embedded Multi-stage Reinforcement Learning Approach. (arXiv:2204.12181v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12181";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1147:"<p>Equipping drones with target search capabilities is desirable for applications in disaster management scenarios and smart warehouse delivery systems. Instead of deploying a single drone, an intelligent drone swarm that can collaborate with one another in maneuvering among obstacles will be more effective in accomplishing the target search in a shorter amount of time. In this work, we propose a data-efficient reinforcement learning-based approach, Adaptive Curriculum Embedded Multi-Stage Learning (ACEMSL), to address the challenges of carrying out a collaborative target search with a visual drone swarm, namely the 3D sparse reward space exploration and the collaborative behavior requirement. Specifically, we develop an adaptive embedded curriculum, where the task difficulty level can be adaptively adjusted according to the success rate achieved in training. Meanwhile, with multi-stage learning, ACEMSL allows data-efficient training and individual-team reward allocation for the collaborative drone swarm. The effectiveness and generalization capability of our approach are validated using simulations and actual flight tests. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:255:" <a href="http://arxiv.org/find/cs/1/au:+Xiao_J/0/1/0/all/0/1">Jiaping Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Pisutsin_P/0/1/0/all/0/1">Phumrapee Pisutsin</a>, <a href="http://arxiv.org/find/cs/1/au:+Feroskhan_M/0/1/0/all/0/1">Mir Feroskhan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:151;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12184";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"SkillNet-NLG: General-Purpose Natural Language Generation with a Sparsely Activated Approach. (arXiv:2204.12184v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12184";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:944:"<p>We present SkillNet-NLG, a sparsely activated approach that handles many natural language generation tasks with one model. Different from traditional dense models that always activate all the parameters, SkillNet-NLG selectively activates relevant parts of the parameters to accomplish a task, where the relevance is controlled by a set of predefined skills. The strength of such model design is that it provides an opportunity to precisely adapt relevant skills to learn new tasks effectively. We evaluate on Chinese natural language generation tasks. Results show that, with only one model file, SkillNet-NLG outperforms previous best performance methods on four of five tasks. SkillNet-NLG performs better than two multi-task learning baselines (a dense model and a Mixture-of-Expert model) and achieves comparable performance to task-specific models. Lastly, SkillNet-NLG surpasses baseline systems when being adapted to new tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:311:" <a href="http://arxiv.org/find/cs/1/au:+Liao_J/0/1/0/all/0/1">Junwei Liao</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_D/0/1/0/all/0/1">Duyu Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_F/0/1/0/all/0/1">Fan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_S/0/1/0/all/0/1">Shuming Shi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:152;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12185";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"TranSiam: Fusing Multimodal Visual Features Using Transformer for Medical Image Segmentation. (arXiv:2204.12185v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12185";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1422:"<p>Automatic segmentation of medical images based on multi-modality is an important topic for disease diagnosis. Although the convolutional neural network (CNN) has been proven to have excellent performance in image segmentation tasks, it is difficult to obtain global information. The lack of global information will seriously affect the accuracy of the segmentation results of the lesion area. In addition, there are visual representation differences between multimodal data of the same patient. These differences will affect the results of the automatic segmentation methods. To solve these problems, we propose a segmentation method suitable for multimodal medical images that can capture global information, named TranSiam. TranSiam is a 2D dual path network that extracts features of different modalities. In each path, we utilize convolution to extract detailed information in low level stage, and design a ICMT block to extract global information in high level stage. ICMT block embeds convolution in the transformer, which can extract global information while retaining spatial and detailed information. Furthermore, we design a novel fusion mechanism based on cross attention and selfattention, called TMM block, which can effectively fuse features between different modalities. On the BraTS 2019 and BraTS 2020 multimodal datasets, we have a significant improvement in accuracy over other popular methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:304:" <a href="http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1">Xuejian Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_S/0/1/0/all/0/1">Shiqiang Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_J/0/1/0/all/0/1">Jijun Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Guo_F/0/1/0/all/0/1">Fei Guo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:153;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12186";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Faster and Better Grammar-based Text-to-SQL Parsing via Clause-level Parallel Decoding and Alignment Loss. (arXiv:2204.12186v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12186";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:648:"<p>Grammar-based parsers have achieved high performance in the cross-domain text-to-SQL parsing task, but suffer from low decoding efficiency due to the much larger number of actions for grammar selection than that of tokens in SQL queries. Meanwhile, how to better align SQL clauses and question segments has been a key challenge for parsing performance. Therefore, this paper proposes clause-level parallel decoding and alignment loss to enhance two high-performance grammar-based parsers, i.e., RATSQL and LGESQL. Experimental results of two parsers show that our method obtains consistent improvements both in accuracy and decoding speed. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:305:" <a href="http://arxiv.org/find/cs/1/au:+Wu_K/0/1/0/all/0/1">Kun Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_L/0/1/0/all/0/1">Lijie Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Z/0/1/0/all/0/1">Zhenghua Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiao_X/0/1/0/all/0/1">Xinyan Xiao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:154;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12190";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:130:"Multi-Agent Reinforcement Learning for Traffic Signal Control through Universal Communication Method. (arXiv:2204.12190v1 [cs.AI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12190";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:917:"<p>How to coordinate the communication among intersections effectively in real complex traffic scenarios with multi-intersection is challenging. Existing approaches only enable the communication in a heuristic manner without considering the content/importance of information to be shared. In this paper, we propose a universal communication form UniComm between intersections. UniComm embeds massive observations collected at one agent into crucial predictions of their impact on its neighbors, which improves the communication efficiency and is universal across existing methods. We also propose a concise network UniLight to make full use of communications enabled by UniComm. Experimental results on real datasets demonstrate that UniComm universally improves the performance of existing state-of-the-art methods, and UniLight significantly outperforms existing methods on a wide range of traffic situations. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:392:" <a href="http://arxiv.org/find/cs/1/au:+Jiang_Q/0/1/0/all/0/1">Qize Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Qin_M/0/1/0/all/0/1">Minhao Qin</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_S/0/1/0/all/0/1">Shengmin Shi</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_W/0/1/0/all/0/1">Weiwei Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Zheng_B/0/1/0/all/0/1">Baihua Zheng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:155;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12191";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"EmpHi: Generating Empathetic Responses with Human-like Intents. (arXiv:2204.12191v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12191";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:939:"<p>In empathetic conversations, humans express their empathy to others with empathetic intents. However, most existing empathetic conversational methods suffer from a lack of empathetic intents, which leads to monotonous empathy. To address the bias of the empathetic intents distribution between empathetic dialogue models and humans, we propose a novel model to generate empathetic responses with human-consistent empathetic intents, EmpHi for short. Precisely, EmpHi learns the distribution of potential empathetic intents with a discrete latent variable, then combines both implicit and explicit intent representation to generate responses with various empathetic intents. Experiments show that EmpHi outperforms state-of-the-art models in terms of empathy, relevance, and diversity on both automatic and human evaluation. Moreover, the case studies demonstrate the high interpretability and outstanding performance of our model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:232:" <a href="http://arxiv.org/find/cs/1/au:+Chen_M/0/1/0/all/0/1">Mao Yan Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_S/0/1/0/all/0/1">Siheng Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_Y/0/1/0/all/0/1">Yujiu Yang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:156;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12193";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Stochastic Coherence Over Attention Trajectory For Continuous Learning In Video Streams. (arXiv:2204.12193v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12193";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1299:"<p>Devising intelligent agents able to live in an environment and learn by observing the surroundings is a longstanding goal of Artificial Intelligence. From a bare Machine Learning perspective, challenges arise when the agent is prevented from leveraging large fully-annotated dataset, but rather the interactions with supervisory signals are sparsely distributed over space and time. This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream. The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations. Spatio-temporal stochastic coherence along the attention trajectory, paired with a contrastive term, leads to an unsupervised learning criterion that naturally copes with the considered setting. Differently from most existing works, the learned representations are used in open-set class-incremental classification of each frame pixel, relying on few supervisions. Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream. Inheriting features from state-of-the art models is not as powerful as one might expect. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:500:" <a href="http://arxiv.org/find/cs/1/au:+Tiezzi_M/0/1/0/all/0/1">Matteo Tiezzi</a>, <a href="http://arxiv.org/find/cs/1/au:+Marullo_S/0/1/0/all/0/1">Simone Marullo</a>, <a href="http://arxiv.org/find/cs/1/au:+Faggi_L/0/1/0/all/0/1">Lapo Faggi</a>, <a href="http://arxiv.org/find/cs/1/au:+Meloni_E/0/1/0/all/0/1">Enrico Meloni</a>, <a href="http://arxiv.org/find/cs/1/au:+Betti_A/0/1/0/all/0/1">Alessandro Betti</a>, <a href="http://arxiv.org/find/cs/1/au:+Melacci_S/0/1/0/all/0/1">Stefano Melacci</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:157;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12195";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Understanding User Satisfaction with Task-oriented Dialogue Systems. (arXiv:2204.12195v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12195";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1490:"<p>$ $Dialogue systems are evaluated depending on their type and purpose. Two categories are often distinguished: (1) task-oriented dialogue systems (TDS), which are typically evaluated on utility, i.e., their ability to complete a specified task, and (2) open domain chatbots, which are evaluated on the user experience, i.e., based on their ability to engage a person. What is the influence of user experience on the user satisfaction rating of TDS as opposed to, or in addition to, utility? We collect data by providing an additional annotation layer for dialogues sampled from the ReDial dataset, a widely used conversational recommendation dataset. Unlike prior work, we annotate the sampled dialogues at both the turn and dialogue level on six dialogue aspects: relevance, interestingness, understanding, task completion, efficiency, and interest arousal. The annotations allow us to study how different dialogue aspects influence user satisfaction. We introduce a comprehensive set of user experience aspects derived from the annotators' open comments that can influence users' overall impression. We find that the concept of satisfaction varies across annotators and dialogues, and show that a relevant turn is significant for some annotators, while for others, an interesting turn is all they need. Our analysis indicates that the proposed user experience aspects provide a fine-grained analysis of user satisfaction that is not captured by a monolithic overall human rating. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:261:" <a href="http://arxiv.org/find/cs/1/au:+Siro_C/0/1/0/all/0/1">Clemencia Siro</a>, <a href="http://arxiv.org/find/cs/1/au:+Aliannejadi_M/0/1/0/all/0/1">Mohammad Aliannejadi</a>, <a href="http://arxiv.org/find/cs/1/au:+Rijke_M/0/1/0/all/0/1">Maarten de Rijke</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:158;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12196";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:63:"Adaptive Split-Fusion Transformer. (arXiv:2204.12196v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12196";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1527:"<p>Neural networks for visual content understanding have recently evolved from convolutional ones (CNNs) to transformers. The prior (CNN) relies on small-windowed kernels to capture the regional clues, demonstrating solid local expressiveness. On the contrary, the latter (transformer) establishes long-range global connections between localities for holistic learning. Inspired by this complementary nature, there is a growing interest in designing hybrid models to best utilize each technique. Current hybrids merely replace convolutions as simple approximations of linear projection or juxtapose a convolution branch with attention, without concerning the importance of local/global modeling. To tackle this, we propose a new hybrid named Adaptive Split-Fusion Transformer (ASF-former) to treat convolutional and attention branches differently with adaptive weights. Specifically, an ASF-former encoder equally splits feature channels into half to fit dual-path inputs. Then, the outputs of dual-path are fused with weighting scalars calculated from visual cues. We also design the convolutional path compactly for efficiency concerns. Extensive experiments on standard benchmarks, such as ImageNet-1K, CIFAR-10, and CIFAR-100, show that our ASF-former outperforms its CNN, transformer counterparts, and hybrid pilots in terms of accuracy (83.9% on ImageNet-1K), under similar conditions (12.9G MACs/56.7M Params, without large-scale pre-training). The code is available at: https://github.com/szx503045266/ASF-former. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:471:" <a href="http://arxiv.org/find/cs/1/au:+Su_Z/0/1/0/all/0/1">Zixuan Su</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_H/0/1/0/all/0/1">Hao Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_J/0/1/0/all/0/1">Jingjing Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Pang_L/0/1/0/all/0/1">Lei Pang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ngo_C/0/1/0/all/0/1">Chong-Wah Ngo</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Y/0/1/0/all/0/1">Yu-Gang Jiang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:159;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12197";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Evaluating Automatic Difficulty Estimation of Logic Formalization Exercises. (arXiv:2204.12197v1 [cs.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12197";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1183:"<p>Teaching logic effectively requires an understanding of the factors which cause logic students to struggle. Formalization exercises, which require the student to produce a formula corresponding to the natural language sentence, are a good candidate for scrutiny since they tap into the students' understanding of various aspects of logic. We correlate the difficulty of formalization exercises predicted by a previously proposed difficulty estimation algorithm with two empirical difficulty measures on the Grade Grinder corpus, which contains student solutions to FOL exercises. We obtain a moderate correlation with both measures, suggesting that the said algorithm indeed taps into important sources of difficulty but leaves a fair amount of variance uncaptured. We conduct an error analysis, closely examining exercises which were misclassified, with the aim of identifying additional sources of difficulty. We identify three additional factors which emerge from the difficulty analysis, namely predicate complexity, pragmatic factors and typicality of the exercises, and discuss the implications of automated difficulty estimation for logic teaching and explainable AI. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:168:" <a href="http://arxiv.org/find/cs/1/au:+Mayn_A/0/1/0/all/0/1">Alexandra Mayn</a>, <a href="http://arxiv.org/find/cs/1/au:+Deemter_K/0/1/0/all/0/1">Kees van Deemter</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:160;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12200";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:76:"Hypergraph Contrastive Collaborative Filtering. (arXiv:2204.12200v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12200";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1736:"<p>Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing users and items into latent representation space, with their correlative patterns from interaction data. Among various CF techniques, the development of GNN-based recommender systems, e.g., PinSage and LightGCN, has offered the state-of-the-art performance. However, two key challenges have not been well explored in existing solutions: i) The over-smoothing effect with deeper graph-based CF architecture, may cause the indistinguishable user representations and degradation of recommendation results. ii) The supervision signals (i.e., user-item interactions) are usually scarce and skewed distributed in reality, which limits the representation power of CF paradigms. To tackle these challenges, we propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF) to jointly capture local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture. In particular, the designed hypergraph structure learning enhances the discrimination ability of GNN-based CF paradigm, in comprehensively capturing the complex high-order dependencies among users. Additionally, our HCCF model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems, based on the hypergraph self-discrimination. Extensive experiments on three benchmark datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods, and the robustness against sparse user interaction data. The implementation codes are available at https://github.com/akaxlh/HCCF. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:473:" <a href="http://arxiv.org/find/cs/1/au:+Xia_L/0/1/0/all/0/1">Lianghao Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_C/0/1/0/all/0/1">Chao Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yong Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_J/0/1/0/all/0/1">Jiashu Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Yin_D/0/1/0/all/0/1">Dawei Yin</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_J/0/1/0/all/0/1">Jimmy Xiangji Huang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:161;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12201";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:116:"Accelerating Fully Homomorphic Encryption by Bridging Modular and Bit-Level Arithmetic. (arXiv:2204.12201v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12201";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1877:"<p>The dramatic increase of data breaches in modern computing platforms has emphasized that access control is not sufficient to protect sensitive user data. Recent advances in cryptography allow end-to-end processing of encrypted data without the need for decryption using Fully Homomorphic Encryption (FHE). Such computation however, is still orders of magnitude slower than direct (unencrypted) computation. Depending on the underlying cryptographic scheme, FHE schemes can work natively either at bit-level using Boolean circuits, or over integers using modular arithmetic. Operations on integers are limited to addition/subtraction and multiplication. On the other hand, bit-level arithmetic is much more comprehensive allowing more operations, such as comparison and division. While modular arithmetic can emulate bit-level computation, there is a significant cost in performance. In this work, we propose a novel method, dubbed \emph{bridging}, that blends faster and restricted modular computation with slower and comprehensive bit-level computation, making them both usable within the same application and with the same cryptographic scheme instantiation. We introduce and open source C++ types representing the two distinct arithmetic modes, offering the possibility to convert from one to the other. Experimental results show that bridging modular and bit-level arithmetic computation can lead to 1-2 orders of magnitude performance improvement for tested synthetic benchmarks, as well as two real-world FHE applications: A URL denylisting case study, and a genotype imputation application. Bridging performance enhancement comes from two factors: 1) Reduced number of operations (especially ciphertext multiplications), and 2) Arithmetic circuits with smaller multiplicative depth, allowing more efficient encryption parameters with smaller polynomial degrees. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:340:" <a href="http://arxiv.org/find/cs/1/au:+Chielle_E/0/1/0/all/0/1">Eduardo Chielle</a>, <a href="http://arxiv.org/find/cs/1/au:+Mazonka_O/0/1/0/all/0/1">Oleg Mazonka</a>, <a href="http://arxiv.org/find/cs/1/au:+Gamil_H/0/1/0/all/0/1">Homer Gamil</a>, <a href="http://arxiv.org/find/cs/1/au:+Maniatakos_M/0/1/0/all/0/1">Michail Maniatakos</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:162;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12202";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:115:"Urban Change Detection Using a Dual-Task Siamese Network and Semi-Supervised Learning. (arXiv:2204.12202v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12202";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:813:"<p>In this study, a Semi-Supervised Learning (SSL) method for improving urban change detection from bi-temporal image pairs was presented. The proposed method adapted a Dual-Task Siamese Difference network that not only predicts changes with the difference decoder, but also segments buildings for both images with a semantics decoder. First, the architecture was modified to produce a second change prediction derived from the semantics predictions. Second, SSL was adopted to improve supervised change detection. For unlabeled data, we introduced a loss that encourages the network to predict consistent changes across the two change outputs. The proposed method was tested on urban change detection using the SpaceNet7 dataset. SSL achieved improved results compared to three fully supervised benchmarks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:249:" <a href="http://arxiv.org/find/cs/1/au:+Hafner_S/0/1/0/all/0/1">Sebastian Hafner</a>, <a href="http://arxiv.org/find/cs/1/au:+Ban_Y/0/1/0/all/0/1">Yifang Ban</a>, <a href="http://arxiv.org/find/cs/1/au:+Nascetti_A/0/1/0/all/0/1">Andrea Nascetti</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:163;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12204";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:79:"Boosting Adversarial Transferability of MLP-Mixer. (arXiv:2204.12204v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12204";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1247:"<p>The security of models based on new architectures such as MLP-Mixer and ViTs needs to be studied urgently. However, most of the current researches are mainly aimed at the adversarial attack against ViTs, and there is still relatively little adversarial work on MLP-mixer. We propose an adversarial attack method against MLP-Mixer called Maxwell's demon Attack (MA). MA breaks the channel-mixing and token-mixing mechanism of MLP-Mixer by controlling the part input of MLP-Mixer's each Mixer layer, and disturbs MLP-Mixer to obtain the main information of images. Our method can mask the part input of the Mixer layer, avoid overfitting of the adversarial examples to the source model, and improve the transferability of cross-architecture. Extensive experimental evaluation demonstrates the effectiveness and superior performance of the proposed MA. Our method can be easily combined with existing methods and can improve the transferability by up to 38.0% on MLP-based ResMLP. Adversarial examples produced by our method on MLP-Mixer are able to exceed the transferability of adversarial examples produced using DenseNet against CNNs. To the best of our knowledge, we are the first work to study adversarial transferability of MLP-Mixer. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:471:" <a href="http://arxiv.org/find/cs/1/au:+Lyu_H/0/1/0/all/0/1">Haoran Lyu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yajie Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tan_Y/0/1/0/all/0/1">Yu-an Tan</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhou_H/0/1/0/all/0/1">Huipeng Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_Y/0/1/0/all/0/1">Yuhang Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_Q/0/1/0/all/0/1">Quanxin Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:164;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12219";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:73:"A note on load balancing in DC microgrids. (arXiv:2204.12219v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12219";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:916:"<p>A problem of load balancing in isolated DC microgrids is considered in this paper. Here, a DC load is fed by multiple heterogenous DC sources, each of which is connected to the load via a boost converter. The gains of the DCC's provide for a means to control the division of load current amongst the DC sources. The primary objective of the control scheme is to minimise the total losses in the network, while maintaining the output voltage within a desired range, serving the load current demand and adhering to VI-characteristics of the power sources. Under assumptions of concavity/monotonocity/piece-wise-linearity of the VI-characteristics, the problem is solved using a convex relaxation. It is shown that the solution to the relaxed problem is tight. Thus, the resulting algorithm is guaranteed to reach global optimality in a numerically efficient manner. Simulations are provided for corroboration. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/eess/1/au:+Mohan_S/0/1/0/all/0/1">Shravan Mohan</a>, <a href="http://arxiv.org/find/eess/1/au:+Bhikkaji_B/0/1/0/all/0/1">Bharath Bhikkaji</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:165;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12223";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Context-Aware Sequence Alignment using 4D Skeletal Augmentation. (arXiv:2204.12223v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12223";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1343:"<p>Temporal alignment of fine-grained human actions in videos is important for numerous applications in computer vision, robotics, and mixed reality. State-of-the-art methods directly learn image-based embedding space by leveraging powerful deep convolutional neural networks. While being straightforward, their results are far from satisfactory, the aligned videos exhibit severe temporal discontinuity without additional post-processing steps. The recent advancements in human body and hand pose estimation in the wild promise new ways of addressing the task of human action alignment in videos. In this work, based on off-the-shelf human pose estimators, we propose a novel context-aware self-supervised learning architecture to align sequences of actions. We name it CASA. Specifically, CASA employs self-attention and cross-attention mechanisms to incorporate the spatial and temporal context of human actions, which can solve the temporal discontinuity problem. Moreover, we introduce a self-supervised learning scheme that is empowered by novel 4D augmentation techniques for 3D skeleton representations. We systematically evaluate the key components of our method. Our experiments on three public datasets demonstrate CASA significantly improves phase progress and Kendall's Tau scores over the previous state-of-the-art methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:321:" <a href="http://arxiv.org/find/cs/1/au:+Kwon_T/0/1/0/all/0/1">Taein Kwon</a>, <a href="http://arxiv.org/find/cs/1/au:+Tekin_B/0/1/0/all/0/1">Bugra Tekin</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_S/0/1/0/all/0/1">Siyu Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Pollefeys_M/0/1/0/all/0/1">Marc Pollefeys</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:166;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12225";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Flow-Adapter Architecture for Unsupervised Machine Translation. (arXiv:2204.12225v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12225";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:898:"<p>In this work, we propose a flow-adapter architecture for unsupervised NMT. It leverages normalizing flows to explicitly model the distributions of sentence-level latent representations, which are subsequently used in conjunction with the attention mechanism for the translation task. The primary novelties of our model are: (a) capturing language-specific sentence representations separately for each language using normalizing flows and (b) using a simple transformation of these latent representations for translating from one language to another. This architecture allows for unsupervised training of each language independently. While there is prior work on latent variables for supervised MT, to the best of our knowledge, this is the first work that uses latent variables and normalizing flows for unsupervised MT. We obtain competitive results on several unsupervised MT benchmarks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:249:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yihong Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Jabbar_H/0/1/0/all/0/1">Haris Jabbar</a>, <a href="http://arxiv.org/find/cs/1/au:+Schutze_H/0/1/0/all/0/1">Hinrich Schütze</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:167;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12227";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Open or not open: Are conventional radio access networks more secure and trustworthy than Open-RAN?. (arXiv:2204.12227v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12227";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:881:"<p>The Open-RAN architecture is a highly promising and future-oriented architecture. It is intended to open up the radio access network and enable more innovation and competition in the market. This will lead to RANs for current 5G networks, but especially for future 6G networks, to move away from the current centralised, provider-specific 3G RAN architecture and therefore even better meet the requirements for future RANs. However, the change in design has also created a drastic shift in the attack surface compared to conventional RANs. In the past, this has often led to negative headlines, which in summary have often associated O-RAN with faulty or inadequate security. In this paper, we analyze what components are involved in an Open-RAN deployment, how the current state of security is to be assessed and what measures need to be taken to ensure secure operation. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:705:" <a href="http://arxiv.org/find/cs/1/au:+Klement_F/0/1/0/all/0/1">Felix Klement</a>, <a href="http://arxiv.org/find/cs/1/au:+Katzenbeisser_S/0/1/0/all/0/1">Stefan Katzenbeisser</a>, <a href="http://arxiv.org/find/cs/1/au:+Ulitzsch_V/0/1/0/all/0/1">Vincent Ulitzsch</a>, <a href="http://arxiv.org/find/cs/1/au:+Kramer_J/0/1/0/all/0/1">Juliane Krämer</a>, <a href="http://arxiv.org/find/cs/1/au:+Stanczak_S/0/1/0/all/0/1">Slawomir Stanczak</a>, <a href="http://arxiv.org/find/cs/1/au:+Utkovski_Z/0/1/0/all/0/1">Zoran Utkovski</a>, <a href="http://arxiv.org/find/cs/1/au:+Bjelakovic_I/0/1/0/all/0/1">Igor Bjelakovic</a>, <a href="http://arxiv.org/find/cs/1/au:+Wunder_G/0/1/0/all/0/1">Gerhard Wunder</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:168;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12230";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"User Trust on an Explainable AI-based Medical Diagnosis Support System. (arXiv:2204.12230v1 [cs.HC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12230";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1148:"<p>Recent research has supported that system explainability improves user trust and willingness to use medical AI for diagnostic support. In this paper, we use chest disease diagnosis based on X-Ray images as a case study to investigate user trust and reliance. Building off explainability, we propose a support system where users (radiologists) can view causal explanations for final decisions. After observing these causal explanations, users provided their opinions of the model predictions and could correct explanations if they did not agree. We measured user trust as the agreement between the model's and the radiologist's diagnosis as well as the radiologists' feedback on the model explanations. Additionally, they reported their trust in the system. We tested our model on the CXR-Eye dataset and it achieved an overall accuracy of 74.1%. However, the experts in our user study agreed with the model for only 46.4% of the cases, indicating the necessity of improving the trust. The self-reported trust score was 3.2 on a scale of 1.0 to 5.0, showing that the users tended to trust the model but the trust still needs to be enhanced. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:326:" <a href="http://arxiv.org/find/cs/1/au:+Rong_Y/0/1/0/all/0/1">Yao Rong</a>, <a href="http://arxiv.org/find/cs/1/au:+Castner_N/0/1/0/all/0/1">Nora Castner</a>, <a href="http://arxiv.org/find/cs/1/au:+Bozkir_E/0/1/0/all/0/1">Efe Bozkir</a>, <a href="http://arxiv.org/find/cs/1/au:+Kasneci_E/0/1/0/all/0/1">Enkelejda Kasneci</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:169;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12231";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"IRC-safe Graph Autoencoder for an unsupervised anomaly detection. (arXiv:2204.12231v1 [hep-ph])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12231";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:652:"<p>Anomaly detection through employing machine learning techniques has emerged as a novel powerful tool in the search for new physics beyond the Standard Model. Historically similar to the development of jet observables, theoretical consistency has not always assumed a central role in the fast development of algorithms and neural network architectures. In this work, we construct an infrared and collinear safe autoencoder based on graph neural networks by employing energy-weighted message passing. We demonstrate that whilst this approach has theoretically favourable properties, it also exhibits formidable sensitivity to non-QCD structures. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:556:" <a href="http://arxiv.org/find/hep-ph/1/au:+Atkinson_O/0/1/0/all/0/1">Oliver Atkinson</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Bhardwaj_A/0/1/0/all/0/1">Akanksha Bhardwaj</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Englert_C/0/1/0/all/0/1">Christoph Englert</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Konar_P/0/1/0/all/0/1">Partha Konar</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Ngairangbam_V/0/1/0/all/0/1">Vishal S. Ngairangbam</a>, <a href="http://arxiv.org/find/hep-ph/1/au:+Spannowsky_M/0/1/0/all/0/1">Michael Spannowsky</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:170;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12237";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:145:"Intercategorical Label Interpolation for Emotional Face Generation with Conditional Generative Adversarial Networks. (arXiv:2204.12237v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12237";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1127:"<p>Generative adversarial networks offer the possibility to generate deceptively real images that are almost indistinguishable from actual photographs. Such systems however rely on the presence of large datasets to realistically replicate the corresponding domain. This is especially a problem if not only random new images are to be generated, but specific (continuous) features are to be co-modeled. A particularly important use case in \emph{Human-Computer Interaction} (HCI) research is the generation of emotional images of human faces, which can be used for various use cases, such as the automatic generation of avatars. The problem hereby lies in the availability of training data. Most suitable datasets for this task rely on categorical emotion models and therefore feature only discrete annotation labels. This greatly hinders the learning and modeling of smooth transitions between displayed affective states. To overcome this challenge, we explore the potential of label interpolation to enhance networks trained on categorical datasets with the ability to generate images conditioned on continuous features. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:602:" <a href="http://arxiv.org/find/cs/1/au:+Mertes_S/0/1/0/all/0/1">Silvan Mertes</a>, <a href="http://arxiv.org/find/cs/1/au:+Schiller_D/0/1/0/all/0/1">Dominik Schiller</a>, <a href="http://arxiv.org/find/cs/1/au:+Lingenfelser_F/0/1/0/all/0/1">Florian Lingenfelser</a>, <a href="http://arxiv.org/find/cs/1/au:+Kiderle_T/0/1/0/all/0/1">Thomas Kiderle</a>, <a href="http://arxiv.org/find/cs/1/au:+Kroner_V/0/1/0/all/0/1">Valentin Kroner</a>, <a href="http://arxiv.org/find/cs/1/au:+Diab_L/0/1/0/all/0/1">Lama Diab</a>, <a href="http://arxiv.org/find/cs/1/au:+Andre_E/0/1/0/all/0/1">Elisabeth André</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:171;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12243";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:141:"Modeling and Analysis of 2-Tier Heterogeneous Vehicular Networks Leveraging Roadside Units and Vehicle Relays. (arXiv:2204.12243v1 [eess.SP])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12243";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1289:"<p>While roadside units (RSUs) play an essential role in vehicle-to-everything (V2X) by communicating with users, some users in congestion areas may not be well-served due to data traffic, signal attenuation, and interference. In these cases, vehicle relays can be employed to enhance the network topology to better serve those users. This paper leverages stochastic geometry to propose a novel framework for the performance analysis of heterogeneous vehicular networks with RSUs, vehicle relays, and vehicle users. We present a two-dimensional analytical model where the spatial dependence between RSUs, vehicle relays, vehicle users, and roads is accurately taken into account through a Cox point process structure. Assuming relays are backhauled to RSUs over a reserved wireless resource and users are associated with the closest RSU or relay, we derive the probability that the typical user is associated with either an RSU or a relay. Then, we derive the signal-to-interference ratio (SIR) coverage probability of the typical user. Finally, using the derived formulas, we evaluate the average effective rate of the typical user in the network. This allows us to determine the gain of the average effective rate of users that results from the deployment of relays in the network. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:179:" <a href="http://arxiv.org/find/eess/1/au:+Choi_C/0/1/0/all/0/1">Chang-Sik Choi</a>, <a href="http://arxiv.org/find/eess/1/au:+Baccelli_F/0/1/0/all/0/1">François Baccelli</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:172;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12244";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:98:"Hybridised Loss Functions for Improved Neural Network Generalisation. (arXiv:2204.12244v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12244";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1352:"<p>Loss functions play an important role in the training of artificial neural networks (ANNs), and can affect the generalisation ability of the ANN model, among other properties. Specifically, it has been shown that the cross entropy and sum squared error loss functions result in different training dynamics, and exhibit different properties that are complementary to one another. It has previously been suggested that a hybrid of the entropy and sum squared error loss functions could combine the advantages of the two functions, while limiting their disadvantages. The effectiveness of such hybrid loss functions is investigated in this study. It is shown that hybridisation of the two loss functions improves the generalisation ability of the ANNs on all problems considered. The hybrid loss function that starts training with the sum squared error loss function and later switches to the cross entropy error loss function is shown to either perform the best on average, or to not be significantly different than the best loss function tested for all problems considered. This study shows that the minima discovered by the sum squared error loss function can be further exploited by switching to cross entropy error loss function. It can thus be concluded that hybridisation of the two loss functions could lead to better performance in ANNs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:259:" <a href="http://arxiv.org/find/cs/1/au:+Dickson_M/0/1/0/all/0/1">Matthew C. Dickson</a>, <a href="http://arxiv.org/find/cs/1/au:+Bosman_A/0/1/0/all/0/1">Anna S. Bosman</a>, <a href="http://arxiv.org/find/cs/1/au:+Malan_K/0/1/0/all/0/1">Katherine M. Malan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:173;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12253";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems. (arXiv:2204.12253v1 [cs.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12253";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:238:"<p>We show that the discrete-time pseudo-reachability problem is decidable for diagonalisable linear dynamical systems. To do this we develop a new approach based on $o$-minimality of real numbers augmented with real exponentiation. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:523:" <a href="http://arxiv.org/find/cs/1/au:+DCosta_J/0/1/0/all/0/1">Julian D'Costa</a>, <a href="http://arxiv.org/find/cs/1/au:+Karimov_T/0/1/0/all/0/1">Toghrul Karimov</a>, <a href="http://arxiv.org/find/cs/1/au:+Ouaknine_J/0/1/0/all/0/1">Joël Ouaknine</a>, <a href="http://arxiv.org/find/cs/1/au:+Salamati_M/0/1/0/all/0/1">Mahmoud Salamati</a>, <a href="http://arxiv.org/find/cs/1/au:+Soudjani_S/0/1/0/all/0/1">Sadegh Soudjani</a>, <a href="http://arxiv.org/find/cs/1/au:+Worrell_J/0/1/0/all/0/1">James Worrell</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:174;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12254";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:77:"Stopped Brownian-increment tamed Euler method. (arXiv:2204.12254v1 [math.PR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12254";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:474:"<p>In this article we propose a new explicit Euler-type approximation method for stochastic differential equations (SDEs). In this method, Brownian increments in the recursion of the Euler method are replaced by suitable bounded functions of the Brownian increments. We prove strong convergence rate one-half for a large class of SDEs with polynomial coefficient functions whose local monotonicity constant grows at most like the logarithm of a Lyapunov-type function. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:178:" <a href="http://arxiv.org/find/math/1/au:+Hutzenthaler_M/0/1/0/all/0/1">Martin Hutzenthaler</a>, <a href="http://arxiv.org/find/math/1/au:+Kisker_K/0/1/0/all/0/1">Kai Kisker</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:175;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12260";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Masked Spectrogram Modeling using Masked Autoencoders for Learning General-purpose Audio Representation. (arXiv:2204.12260v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12260";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1902:"<p>Recent general-purpose audio representations show state-of-the-art performance on various audio tasks. These representations are pre-trained by self-supervised learning methods that create training signals from the input. For example, typical audio contrastive learning uses temporal relationships among input sounds to create training signals, whereas some methods use a difference among input views created by data augmentations. However, these training signals do not provide information derived from the intact input sound, which we think is suboptimal for learning representation that describes the input as it is. </p> <p>In this paper, we seek to learn audio representations from the input itself as supervision using a pretext task of auto-encoding of masked spectrogram patches, Masked Spectrogram Modeling (MSM, a variant of Masked Image Modeling applied to audio spectrogram). To implement MSM, we use Masked Autoencoders (MAE), an image self-supervised learning method. MAE learns to efficiently encode the small number of visible patches into latent representations to carry essential information for reconstructing a large number of masked patches. While training, MAE minimizes the reconstruction error, which uses the input as training signal, consequently achieving our goal. </p> <p>We conducted experiments on our MSM using MAE (MSM-MAE) models under the evaluation benchmark of the HEAR 2021 NeurIPS Challenge. Our MSM-MAE models outperformed the HEAR 2021 Challenge results on seven out of 15 tasks (e.g., accuracies of 73.4% on CREMA-D and 85.8% on LibriCount), while showing top performance on other tasks where specialized models perform better. We also investigate how the design choices of MSM-MAE impact the performance and conduct qualitative analysis of visualization outcomes to gain an understanding of learned representations. We make our code available online. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:433:" <a href="http://arxiv.org/find/eess/1/au:+Niizumi_D/0/1/0/all/0/1">Daisuke Niizumi</a>, <a href="http://arxiv.org/find/eess/1/au:+Takeuchi_D/0/1/0/all/0/1">Daiki Takeuchi</a>, <a href="http://arxiv.org/find/eess/1/au:+Ohishi_Y/0/1/0/all/0/1">Yasunori Ohishi</a>, <a href="http://arxiv.org/find/eess/1/au:+Harada_N/0/1/0/all/0/1">Noboru Harada</a>, <a href="http://arxiv.org/find/eess/1/au:+Kashino_K/0/1/0/all/0/1">Kunio Kashino</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:176;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12261";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:70:"Managing Reliability Skew in DNA Storage. (arXiv:2204.12261v1 [cs.ET])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12261";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1926:"<p>DNA is emerging as an increasingly attractive medium for data storage due to a number of important and unique advantages it offers, most notably the unprecedented durability and density. While the technology is evolving rapidly, the prohibitive cost of reads and writes, the high frequency and the peculiar nature of errors occurring in DNA storage pose a significant challenge to its adoption. In this work we make a novel observation that the probability of successful recovery of a given bit from any type of a DNA-based storage system highly depends on its physical location within the DNA molecule. In other words, when used as a storage medium, some parts of DNA molecules appear significantly more reliable than others. We show that large differences in reliability between different parts of DNA molecules lead to highly inefficient use of error-correction resources, and that commonly used techniques such as unequal error-correction cannot be used to bridge the reliability gap between different locations in the context of DNA storage. We then propose two approaches to address the problem. The first approach is general and applies to any types of data; it stripes the data and ECC codewords across DNA molecules in a particular fashion such that the effects of errors are spread out evenly across different codewords and molecules, effectively de-biasing the underlying storage medium. The second approach is application-specific, and seeks to leverage the underlying reliability bias by using application-aware mapping of data onto DNA molecules such that data that requires higher reliability is stored in more reliable locations, whereas data that needs lower reliability is stored in less reliable parts of DNA molecules. We show that the proposed data mapping can be used to achieve graceful degradation in the presence of high error rates, or to implement the concept of approximate storage in DNA. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:330:" <a href="http://arxiv.org/find/cs/1/au:+Lin_D/0/1/0/all/0/1">Dehui Lin</a>, <a href="http://arxiv.org/find/cs/1/au:+Tabatabaee_Y/0/1/0/all/0/1">Yasamin Tabatabaee</a>, <a href="http://arxiv.org/find/cs/1/au:+Pote_Y/0/1/0/all/0/1">Yash Pote</a>, <a href="http://arxiv.org/find/cs/1/au:+Jevdjic_D/0/1/0/all/0/1">Djordje Jevdjic</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:177;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12263";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking. (arXiv:2204.12263v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12263";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1271:"<p>With the explosive growth of scientific publications, making the synthesis of scientific knowledge and fact checking becomes an increasingly complex task. In this paper, we propose a multi-task approach for verifying the scientific questions based on a joint reasoning from facts and evidence in research articles. We propose an intelligent combination of (1) an automatic information summarization and (2) a Boolean Question Answering which allows to generate an answer to a scientific question from only extracts obtained after summarization. Thus on a given topic, our proposed approach conducts structured content modeling based on paper abstracts to answer a scientific question while highlighting texts from paper that discuss the topic. We based our final system on an end-to-end Extractive Question Answering (EQA) combined with a three outputs classification model to perform in-depth semantic understanding of a question to illustrate the aggregation of multiple responses. With our light and fast proposed architecture, we achieved an average error rate of 4% and a F1-score of 95.6%. Our results are supported via experiments with two QA models (BERT, RoBERTa) over 3 Million Open Access (OA) articles in the medical and health domains on Europe PMC. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:357:" <a href="http://arxiv.org/find/cs/1/au:+Rakotoson_L/0/1/0/all/0/1">Loïc Rakotoson</a>, <a href="http://arxiv.org/find/cs/1/au:+Letaillieur_C/0/1/0/all/0/1">Charles Letaillieur</a>, <a href="http://arxiv.org/find/cs/1/au:+Massip_S/0/1/0/all/0/1">Sylvain Massip</a>, <a href="http://arxiv.org/find/cs/1/au:+Laleye_F/0/1/0/all/0/1">Fréjus Laleye</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:178;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12264";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Energy Efficient Beamforming Optimization for Integrated Sensing and Communication. (arXiv:2204.12264v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12264";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:864:"<p>This paper investigates the optimization of beamforming design in a system with integrated sensing and communication (ISAC), where the base station (BS) sends signals for simultaneous multiuser communication and radar sensing. We aim at maximizing the energy efficiency (EE) of the multiuser communication while guaranteeing the sensing requirement in terms of individual radar beampattern gains. The problem is a complicated nonconvex fractional program which is challenging to be solved. By appropriately reformulating the problem and then applying the techniques of successive convex approximation (SCA) and semidefinite relaxation (SDR), we propose an iterative algorithm to address this problem. In theory, we prove that the introduced relaxation of the SDR is rigorously tight. Numerical results validate the effectiveness of the proposed algorithm. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:386:" <a href="http://arxiv.org/find/cs/1/au:+He_Z/0/1/0/all/0/1">Zhenyao He</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_W/0/1/0/all/0/1">Wei Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Shen_H/0/1/0/all/0/1">Hong Shen</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_Y/0/1/0/all/0/1">Yongming Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiao_H/0/1/0/all/0/1">Huahua Xiao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:179;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12266";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"Attentive Fine-Grained Structured Sparsity for Image Restoration. (arXiv:2204.12266v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12266";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1174:"<p>Image restoration tasks have witnessed great performance improvement in recent years by developing large deep models. Despite the outstanding performance, the heavy computation demanded by the deep models has restricted the application of image restoration. To lift the restriction, it is required to reduce the size of the networks while maintaining accuracy. Recently, N:M structured pruning has appeared as one of the effective and practical pruning approaches for making the model efficient with the accuracy constraint. However, it fails to account for different computational complexities and performance requirements for different layers of an image restoration network. To further optimize the trade-off between the efficiency and the restoration accuracy, we propose a novel pruning method that determines the pruning ratio for N:M structured sparsity at each layer. Extensive experimental results on super-resolution and deblurring tasks demonstrate the efficacy of our method which outperforms previous pruning methods significantly. PyTorch implementation for the proposed methods will be publicly available at https://github.com/JungHunOh/SLS_CVPR2022. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:471:" <a href="http://arxiv.org/find/cs/1/au:+Oh_J/0/1/0/all/0/1">Junghun Oh</a>, <a href="http://arxiv.org/find/cs/1/au:+Kim_H/0/1/0/all/0/1">Heewon Kim</a>, <a href="http://arxiv.org/find/cs/1/au:+Nah_S/0/1/0/all/0/1">Seungjun Nah</a>, <a href="http://arxiv.org/find/cs/1/au:+Hong_C/0/1/0/all/0/1">Cheeun Hong</a>, <a href="http://arxiv.org/find/cs/1/au:+Choi_J/0/1/0/all/0/1">Jonghyun Choi</a>, <a href="http://arxiv.org/find/cs/1/au:+Lee_K/0/1/0/all/0/1">Kyoung Mu Lee</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:180;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12267";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Sentiment Analysis of Cybersecurity Content on Twitter and Reddit. (arXiv:2204.12267v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12267";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1341:"<p>Sentiment Analysis provides an opportunity to understand the subject(s), especially in the digital age, due to an abundance of public data and effective algorithms. Cybersecurity is a subject where opinions are plentiful and differing in the public domain. This descriptive research analyzed cybersecurity content on Twitter and Reddit to measure its sentiment, positive or negative, or neutral. The data from Twitter and Reddit was amassed via technology-specific APIs during a selected timeframe to create datasets, which were then analyzed individually for their sentiment by VADER, an NLP (Natural Language Processing) algorithm. A random sample of cybersecurity content (ten tweets and posts) was also classified for sentiments by twenty human annotators to evaluate the performance of VADER. Cybersecurity content on Twitter was at least 48% positive, and Reddit was at least 26.5% positive. The positive or neutral content far outweighed negative sentiments across both platforms. When compared to human classification, which was considered the standard or source of truth, VADER produced 60% accuracy for Twitter and 70% for Reddit in assessing the sentiment; in other words, some agreement between algorithm and human classifiers. Overall, the goal was to explore an uninhibited research topic about cybersecurity sentiment </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:79:" <a href="http://arxiv.org/find/cs/1/au:+Thapa_B/0/1/0/all/0/1">Bipun Thapa</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:181;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12270";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:84:"Graph Neural Networks for Microbial Genome Recovery. (arXiv:2204.12270v1 [q-bio.GN])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12270";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1501:"<p>Microbes have a profound impact on our health and environment, but our understanding of the diversity and function of microbial communities is severely limited. Through DNA sequencing of microbial communities (metagenomics), DNA fragments (reads) of the individual microbes can be obtained, which through assembly graphs can be combined into long contiguous DNA sequences (contigs). Given the complexity of microbial communities, single contig microbial genomes are rarely obtained. Instead, contigs are eventually clustered into bins, with each bin ideally making up a full genome. This process is referred to as metagenomic binning. </p> <p>Current state-of-the-art techniques for metagenomic binning rely only on the local features for the individual contigs. These techniques therefore fail to exploit the similarities between contigs as encoded by the assembly graph, in which the contigs are organized. In this paper, we propose to use Graph Neural Networks (GNNs) to leverage the assembly graph when learning contig representations for metagenomic binning. Our method, VaeG-Bin, combines variational autoencoders for learning latent representations of the individual contigs, with GNNs for refining these representations by taking into account the neighborhood structure of the contigs in the assembly graph. We explore several types of GNNs and demonstrate that VaeG-Bin recovers more high-quality genomes than other state-of-the-art binners on both simulated and real-world datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:439:" <a href="http://arxiv.org/find/q-bio/1/au:+Lamurias_A/0/1/0/all/0/1">Andre Lamurias</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Tibo_A/0/1/0/all/0/1">Alessandro Tibo</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Hose_K/0/1/0/all/0/1">Katja Hose</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Albertsen_M/0/1/0/all/0/1">Mads Albertsen</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Nielsen_T/0/1/0/all/0/1">Thomas Dyhre Nielsen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:182;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12274";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Socio-technical constraints and affordances of virtual collaboration -- A study of four online hackathons. (arXiv:2204.12274v1 [cs.HC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12274";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1928:"<p>Hackathons and similar time-bounded events have become a popular form of collaboration. They are commonly organized as in-person events during which teams engage in intense collaboration over a short period of time to complete a project that is of interest to them. Most research to date has focused on studying how teams collaborate in a co-located setting, pointing towards the advantages of radical co-location. The global pandemic of 2020, however, has led to many hackathons moving online, which challenges our current understanding of how they function. In this paper, we address this gap by presenting findings from a multiple-case study of 10 hackathon teams that participated in 4 hackathons across two continents. By analyzing the collected data, we found that teams merged synchronous and asynchronous means of communication to maintain a common understanding of work progress as well as to maintain awareness of each other's tasks. Task division was self-assigned based on individual skills or interests, while leaders emerged from different strategies (e.g., participant experience, the responsibility of registering the team in an event). Some of the affordances of in-person hackathons, such as the radical co-location of team members, could be partially reproduced in teams that kept synchronous communication channels while working (i.e., shared audio territories), in a sort of "radical virtual co-location". However, others, such as interactions with other teams, easy access to mentors, and networking with other participants, decreased. In addition, the technical constraints of the different communication tools and platforms brought technical problems and were overwhelming to participants. Our work contributes to understanding the virtual collaboration of small teams in the context of online hackathons and how technologies and event structures proposed by organizers imply this collaboration. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:497:" <a href="http://arxiv.org/find/cs/1/au:+Mendes_W/0/1/0/all/0/1">Wendy Mendes</a>, <a href="http://arxiv.org/find/cs/1/au:+Richard_A/0/1/0/all/0/1">Albert Richard</a>, <a href="http://arxiv.org/find/cs/1/au:+Tillo_T/0/1/0/all/0/1">Tähe-Kai Tillo</a>, <a href="http://arxiv.org/find/cs/1/au:+Pinto_G/0/1/0/all/0/1">Gustavo Pinto</a>, <a href="http://arxiv.org/find/cs/1/au:+Gama_K/0/1/0/all/0/1">Kiev Gama</a>, <a href="http://arxiv.org/find/cs/1/au:+Nolte_A/0/1/0/all/0/1">Alexander Nolte</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:183;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12279";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Low-dimensional representation of infant and adult vocalization acoustics. (arXiv:2204.12279v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12279";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1418:"<p>During the first years of life, infant vocalizations change considerably, as infants develop the vocalization skills that enable them to produce speech sounds. Characterizations based on specific acoustic features, protophone categories, or phonetic transcription are able to provide a representation of the sounds infants make at different ages and in different contexts but do not fully describe how sounds are perceived by listeners, can be inefficient to obtain at large scales, and are difficult to visualize in two dimensions without additional statistical processing. Machine-learning-based approaches provide the opportunity to complement these characterizations with purely data-driven representations of infant sounds. Here, we use spectral features extraction and unsupervised machine learning, specifically Uniform Manifold Approximation (UMAP), to obtain a novel 2-dimensional spatial representation of infant and caregiver vocalizations extracted from day-long home recordings. UMAP yields a continuous and well-distributed space conducive to certain analyses of infant vocal development. For instance, we found that the dispersion of infant vocalization acoustics within the 2-D space over a day increased from 3 to 9 months, and then decreased from 9 to 18 months. The method also permits analysis of similarity between infant and adult vocalizations, which also shows changes with infant age. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:366:" <a href="http://arxiv.org/find/eess/1/au:+Pagliarini_S/0/1/0/all/0/1">Silvia Pagliarini</a>, <a href="http://arxiv.org/find/eess/1/au:+Schneider_S/0/1/0/all/0/1">Sara Schneider</a>, <a href="http://arxiv.org/find/eess/1/au:+Kello_C/0/1/0/all/0/1">Christopher T. Kello</a>, <a href="http://arxiv.org/find/eess/1/au:+Warlaumont_A/0/1/0/all/0/1">Anne S. Warlaumont</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:184;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12280";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:87:"The variance-penalized stochastic shortest path problem. (arXiv:2204.12280v1 [math.OC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12280";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:918:"<p>The stochastic shortest path problem (SSPP) asks to resolve the non-deterministic choices in a Markov decision process (MDP) such that the expected accumulated weight before reaching a target state is maximized. This paper addresses the optimization of the variance-penalized expectation (VPE) of the accumulated weight, which is a variant of the SSPP in which a multiple of the variance of accumulated weights is incurred as a penalty. It is shown that the optimal VPE in MDPs with non-negative weights as well as an optimal deterministic finite-memory scheduler can be computed in exponential space. The threshold problem whether the maximal VPE exceeds a given rational is shown to be EXPTIME-hard and to lie in NEXPTIME. Furthermore, a result of interest in its own right obtained on the way is that a variance-minimal scheduler among all expectation-optimal schedulers can be computed in polynomial time. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:257:" <a href="http://arxiv.org/find/math/1/au:+Piribauer_J/0/1/0/all/0/1">Jakob Piribauer</a>, <a href="http://arxiv.org/find/math/1/au:+Sankur_O/0/1/0/all/0/1">Ocan Sankur</a>, <a href="http://arxiv.org/find/math/1/au:+Baier_C/0/1/0/all/0/1">Christel Baier</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:185;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12281";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:61:"Data-Efficient Backdoor Attacks. (arXiv:2204.12281v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12281";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1119:"<p>Recent studies have proven that deep neural networks are vulnerable to backdoor attacks. Specifically, by mixing a small number of poisoned samples into the training set, the behavior of the trained model can be maliciously controlled. Existing attack methods construct such adversaries by randomly selecting some clean data from the benign set and then embedding a trigger into them. However, this selection strategy ignores the fact that each poisoned sample contributes inequally to the backdoor injection, which reduces the efficiency of poisoning. In this paper, we formulate improving the poisoned data efficiency by the selection as an optimization problem and propose a Filtering-and-Updating Strategy (FUS) to solve it. The experimental results on CIFAR-10 and ImageNet-10 indicate that the proposed method is effective: the same attack success rate can be achieved with only 47% to 75% of the poisoned sample volume compared to the random selection strategy. More importantly, the adversaries selected according to one setting can generalize well to other settings, exhibiting strong transferability. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:303:" <a href="http://arxiv.org/find/cs/1/au:+Xia_P/0/1/0/all/0/1">Pengfei Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Z/0/1/0/all/0/1">Ziqiang Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_W/0/1/0/all/0/1">Wei Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_B/0/1/0/all/0/1">Bin Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:186;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12283";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:177:"A Novel Framework for Quantification of Immune Cell Density and Characterization of Tumor-Immune Spatial Relationships in Tumor Microenvironment. (arXiv:2204.12283v1 [q-bio.QM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12283";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:885:"<p>Understanding the impact of tumor biology on the composition of nearby cells often requires characterizing the impact of biologically distinct tumor regions. Biomarkers have been developed to label biologically distinct tumor regions, but challenges arise because of differences in the spatial extent and distribution of differentially labeled regions. In this work, we present a framework for systematically investigating the impact of distinct tumor regions on cells near the tumor borders, accounting their cross spatial distributions. We apply the framework to multiplex immunohistochemistry (mIHC) studies of pancreatic cancer and show its efficacy in demonstrating how biologically different tumor regions impact the immune response in the tumor microenvironment. Furthermore, we show that the proposed framework can be extended to largescale whole slide image analysis. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:1052:" <a href="http://arxiv.org/find/q-bio/1/au:+Hasan_M/0/1/0/all/0/1">Mahmudul Hasan</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Kaczmarzyk_J/0/1/0/all/0/1">Jakub R. Kaczmarzyk</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Paredes_D/0/1/0/all/0/1">David Paredes</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Oblein_L/0/1/0/all/0/1">Lyanne Oblein</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Oentoro_J/0/1/0/all/0/1">Jaymie Oentoro</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Abousamra_S/0/1/0/all/0/1">Shahira Abousamra</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Horowitz_M/0/1/0/all/0/1">Michael Horowitz</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Samaras_D/0/1/0/all/0/1">Dimitris Samaras</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Chen_C/0/1/0/all/0/1">Chao Chen</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Kurc_T/0/1/0/all/0/1">Tahsin Kurc</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Shroyer_K/0/1/0/all/0/1">Kenneth R. Shroyer</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Saltz_J/0/1/0/all/0/1">Joel Saltz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:187;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12284";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Federated Stochastic Primal-dual Learning with Differential Privacy. (arXiv:2204.12284v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12284";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1774:"<p>Federated learning (FL) is a new paradigm that enables many clients to jointly train a machine learning (ML) model under the orchestration of a parameter server while keeping the local data not being exposed to any third party. However, the training of FL is an interactive process between local clients and the parameter server. Such process would cause privacy leakage since adversaries may retrieve sensitive information by analyzing the overheard messages. In this paper, we propose a new federated stochastic primal-dual algorithm with differential privacy (FedSPD-DP). Compared to the existing methods, the proposed FedSPD-DP incorporates local stochastic gradient descent (local SGD) and partial client participation (PCP) for addressing the issues of communication efficiency and straggler effects due to randomly accessed clients. Our analysis shows that the data sampling strategy and PCP can enhance the data privacy whereas the larger number of local SGD steps could increase privacy leakage, revealing a non-trivial tradeoff between algorithm communication efficiency and privacy protection. Specifically, we show that, by guaranteeing $(\epsilon, \delta)$-DP for each client per communication round, the proposed algorithm guarantees $(\mathcal{O}(q\epsilon \sqrt{p T}), \delta)$-DP after $T$ communication rounds while maintaining an $\mathcal{O}(1/\sqrt{pTQ})$ convergence rate for a convex and non-smooth learning problem, where $Q$ is the number of local SGD steps, $p$ is the client sampling probability, $q=\max_{i} q_i/\sqrt{1-q_i}$ and $q_i$ is the data sampling probability of each client under PCP. Experiment results are presented to evaluate the practical performance of the proposed algorithm and comparison with state-of-the-art methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:316:" <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yiwei Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_S/0/1/0/all/0/1">Shuai Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chang_T/0/1/0/all/0/1">Tsung-Hui Chang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chi_C/0/1/0/all/0/1">Chong-Yung Chi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:188;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12288";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Empowering Next POI Recommendation with Multi-Relational Modeling. (arXiv:2204.12288v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12288";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1365:"<p>With the wide adoption of mobile devices and web applications, location-based social networks (LBSNs) offer large-scale individual-level location-related activities and experiences. Next point-of-interest (POI) recommendation is one of the most important tasks in LBSNs, aiming to make personalized recommendations of next suitable locations to users by discovering preferences from users' historical activities. Noticeably, LBSNs have offered unparalleled access to abundant heterogeneous relational information about users and POIs (including user-user social relations, such as families or colleagues; and user-POI visiting relations). Such relational information holds great potential to facilitate the next POI recommendation. However, most existing methods either focus on merely the user-POI visits, or handle different relations based on over-simplified assumptions while neglecting relational heterogeneities. To fill these critical voids, we propose a novel framework, MEMO, which effectively utilizes the heterogeneous relations with a multi-network representation learning module, and explicitly incorporates the inter-temporal user-POI mutual influence with the coupled recurrent neural networks. Extensive experiments on real-world LBSN data validate the superiority of our framework over the state-of-the-art next POI recommendation methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:395:" <a href="http://arxiv.org/find/cs/1/au:+Huang_Z/0/1/0/all/0/1">Zheng Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_J/0/1/0/all/0/1">Jing Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Dong_Y/0/1/0/all/0/1">Yushun Dong</a>, <a href="http://arxiv.org/find/cs/1/au:+Foutz_N/0/1/0/all/0/1">Natasha Zhang Foutz</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_J/0/1/0/all/0/1">Jundong Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:189;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12289";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:78:"A dynamic that evolves toward a Nash equilibrium. (arXiv:2204.12289v1 [cs.GT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12289";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:923:"<p>In this paper, we study an exponentiated multiplicative weights dynamic based on Hedge, a well-known algorithm in theoretical machine learning and algorithmic game theory. The empirical average (arithmetic mean) of the iterates Hedge generates is known to approach a minimax equilibrium in zero-sum games. We generalize that result to show that a weighted version of the empirical average converges to an equilibrium in the class of symmetric bimatrix games for a diminishing learning rate parameter. Our dynamic is the first dynamical system (whether continuous or discrete) shown to evolve toward a Nash equilibrium without assuming monotonicity of the payoff structure or that a potential function exists. Although our setting is somewhat restricted, it is also general as the class of symmetric bimatrix games captures the entire computational complexity of the PPAD class (even to approximate an equilibrium). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:95:" <a href="http://arxiv.org/find/cs/1/au:+Avramopoulos_I/0/1/0/all/0/1">Ioannis Avramopoulos</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:190;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12290";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"On Machine Learning-Driven Surrogates for Sound Transmission Loss Simulations. (arXiv:2204.12290v1 [cs.SD])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12290";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:772:"<p>Surrogate models are data-based approximations of computationally expensive simulations that enable efficient exploration of the model's design space and informed decision-making in many physical domains. The usage of surrogate models in the vibroacoustic domain, however, is challenging due to the non-smooth, complex behavior of wave phenomena. This paper investigates four Machine Learning (ML) approaches in the modelling of surrogates of Sound Transmission Loss (STL). Feature importance and feature engineering are used to improve the models' accuracy while increasing their interpretability and physical consistency. The transfer of the proposed techniques to other problems in the vibroacoustic domain and possible limitations of the models are discussed. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:457:" <a href="http://arxiv.org/find/cs/1/au:+Cunha_B/0/1/0/all/0/1">Barbara Cunha</a> (LTDS), <a href="http://arxiv.org/find/cs/1/au:+Zine_A/0/1/0/all/0/1">Abdel-Malek Zine</a> (ICJ), <a href="http://arxiv.org/find/cs/1/au:+Ichchou_M/0/1/0/all/0/1">Mohamed Ichchou</a> (ECL), <a href="http://arxiv.org/find/cs/1/au:+Droz_C/0/1/0/all/0/1">Christophe Droz</a> (COSYS-SII), <a href="http://arxiv.org/find/cs/1/au:+Foulard_S/0/1/0/all/0/1">Stéphane Foulard</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:191;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12293";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"Contrastive Language-Action Pre-training for Temporal Localization. (arXiv:2204.12293v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12293";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1328:"<p>Long-form video understanding requires designing approaches that are able to temporally localize activities or language. End-to-end training for such tasks is limited by the compute device memory constraints and lack of temporal annotations at large-scale. These limitations can be addressed by pre-training on large datasets of temporally trimmed videos supervised by class annotations. Once the video encoder is pre-trained, it is common practice to freeze it during fine-tuning. Therefore, the video encoder does not learn temporal boundaries and unseen classes, causing a domain gap with respect to the downstream tasks. Moreover, using temporally trimmed videos prevents to capture the relations between different action categories and the background context in a video clip which results in limited generalization capacity. To address these limitations, we propose a novel post-pre-training approach without freezing the video encoder which leverages language. We introduce a masked contrastive learning loss to capture visio-linguistic relations between activities, background video clips and language in the form of captions. Our experiments show that the proposed approach improves the state-of-the-art on temporal action localization, few-shot temporal action localization, and video language grounding tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:497:" <a href="http://arxiv.org/find/cs/1/au:+Xu_M/0/1/0/all/0/1">Mengmeng Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Gundogdu_E/0/1/0/all/0/1">Erhan Gundogdu</a>, <a href="http://arxiv.org/find/cs/1/au:+Lapin_M/0/1/0/all/0/1">Maksim Lapin</a>, <a href="http://arxiv.org/find/cs/1/au:+Ghanem_B/0/1/0/all/0/1">Bernard Ghanem</a>, <a href="http://arxiv.org/find/cs/1/au:+Donoser_M/0/1/0/all/0/1">Michael Donoser</a>, <a href="http://arxiv.org/find/cs/1/au:+Bazzani_L/0/1/0/all/0/1">Loris Bazzani</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:192;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12294";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims. (arXiv:2204.12294v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12294";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:929:"<p>False information has a significant negative influence on individuals as well as on the whole society. Especially in the current COVID-19 era, we witness an unprecedented growth of medical misinformation. To help tackle this problem with machine learning approaches, we are publishing a feature-rich dataset of approx. 317k medical news articles/blogs and 3.5k fact-checked claims. It also contains 573 manually and more than 51k automatically labelled mappings between claims and articles. Mappings consist of claim presence, i.e., whether a claim is contained in a given article, and article stance towards the claim. We provide several baselines for these two tasks and evaluate them on the manually labelled part of the dataset. The dataset enables a number of additional tasks related to medical misinformation, such as misinformation characterisation studies or studies of misinformation diffusion between sources. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:583:" <a href="http://arxiv.org/find/cs/1/au:+Srba_I/0/1/0/all/0/1">Ivan Srba</a>, <a href="http://arxiv.org/find/cs/1/au:+Pecher_B/0/1/0/all/0/1">Branislav Pecher</a>, <a href="http://arxiv.org/find/cs/1/au:+Tomlein_M/0/1/0/all/0/1">Matus Tomlein</a>, <a href="http://arxiv.org/find/cs/1/au:+Moro_R/0/1/0/all/0/1">Robert Moro</a>, <a href="http://arxiv.org/find/cs/1/au:+Stefancova_E/0/1/0/all/0/1">Elena Stefancova</a>, <a href="http://arxiv.org/find/cs/1/au:+Simko_J/0/1/0/all/0/1">Jakub Simko</a>, <a href="http://arxiv.org/find/cs/1/au:+Bielikova_M/0/1/0/all/0/1">Maria Bielikova</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:193;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12296";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"Unsupervised Segmentation of Hyperspectral Remote Sensing Images with Superpixels. (arXiv:2204.12296v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12296";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:815:"<p>In this paper, we propose an unsupervised method for hyperspectral remote sensing image segmentation. The method exploits the mean-shift clustering algorithm that takes as input a preliminary hyperspectral superpixels segmentation together with the spectral pixel information. The proposed method does not require the number of segmentation classes as input parameter, and it does not exploit any a-priori knowledge about the type of land-cover or land-use to be segmented (e.g. water, vegetation, building etc.). Experiments on Salinas, SalinasA, Pavia Center and Pavia University datasets are carried out. Performance are measured in terms of normalized mutual information, adjusted Rand index and F1-score. Results demonstrate the validity of the proposed method in comparison with the state of the art. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:355:" <a href="http://arxiv.org/find/cs/1/au:+Barbato_M/0/1/0/all/0/1">Mirko Paolo Barbato</a>, <a href="http://arxiv.org/find/cs/1/au:+Napoletano_P/0/1/0/all/0/1">Paolo Napoletano</a>, <a href="http://arxiv.org/find/cs/1/au:+Piccoli_F/0/1/0/all/0/1">Flavio Piccoli</a>, <a href="http://arxiv.org/find/cs/1/au:+Schettini_R/0/1/0/all/0/1">Raimondo Schettini</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:194;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12297";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Brain Tumor Detection and Classification Using a New Evolutionary Convolutional Neural Network. (arXiv:2204.12297v1 [cs.NE])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12297";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1485:"<p>A definitive diagnosis of a brain tumour is essential for enhancing treatment success and patient survival. However, it is difficult to manually evaluate multiple magnetic resonance imaging (MRI) images generated in a clinic. Therefore, more precise computer-based tumour detection methods are required. In recent years, many efforts have investigated classical machine learning methods to automate this process. Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly. The goal of this study, therefore, is to employ brain MRI images to distinguish between healthy and unhealthy patients (including tumour tissues). As a result, an enhanced convolutional neural network is developed in this paper for accurate brain image classification. The enhanced convolutional neural network structure is composed of components for feature extraction and optimal classification. Nonlinear L\'evy Chaotic Moth Flame Optimizer (NLCMFO) optimizes hyperparameters for training convolutional neural network layers. Using the BRATS 2015 data set and brain image datasets from Harvard Medical School, the proposed model is assessed and compared with various optimization techniques. The optimized CNN model outperforms other models from the literature by providing 97.4% accuracy, 96.0% sensitivity, 98.6% specificity, 98.4% precision, and 96.6% F1-score, (the mean of the weighted harmonic value of CNN precision and recall). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:434:" <a href="http://arxiv.org/find/cs/1/au:+Dehkordi_A/0/1/0/all/0/1">Amin Abdollahi Dehkordi</a>, <a href="http://arxiv.org/find/cs/1/au:+Hashemi_M/0/1/0/all/0/1">Mina Hashemi</a>, <a href="http://arxiv.org/find/cs/1/au:+Neshat_M/0/1/0/all/0/1">Mehdi Neshat</a>, <a href="http://arxiv.org/find/cs/1/au:+Mirjalili_S/0/1/0/all/0/1">Seyedali Mirjalili</a>, <a href="http://arxiv.org/find/cs/1/au:+Sadiq_A/0/1/0/all/0/1">Ali Safaa Sadiq</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:195;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12298";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Linear TDOA-based Measurements for Distributed Estimation and Localized Tracking. (arXiv:2204.12298v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12298";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1036:"<p>We propose a linear time-difference-of-arrival (TDOA) measurement model to improve \textit{distributed} estimation performance for localized target tracking. We design distributed filters over sparse (possibly large-scale) communication networks using consensus-based data-fusion techniques. The proposed distributed and localized tracking protocols considerably reduce the sensor network's required connectivity and communication rate. We, further, consider $\kappa$-redundant observability and fault-tolerant design in case of losing communication links or sensor nodes. We present the minimal conditions on the remaining sensor network (after link/node removal) such that the distributed observability is still preserved and, thus, the sensor network can track the (single) maneuvering target. The motivation is to reduce the communication load versus the processing load, as the computational units are, in general, less costly than the communication devices. We evaluate the tracking performance via simulations in MATLAB. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:213:" <a href="http://arxiv.org/find/eess/1/au:+Doostmohammadian_M/0/1/0/all/0/1">Mohammadreza Doostmohammadian</a>, <a href="http://arxiv.org/find/eess/1/au:+Charalambous_T/0/1/0/all/0/1">Themistoklis Charalambous</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:196;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12300";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:77:"Unified GCNs: Towards Connecting GCNs with CNNs. (arXiv:2204.12300v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12300";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1611:"<p>Graph Convolutional Networks (GCNs) have been widely demonstrated their powerful ability in graph data representation and learning. Existing graph convolution layers are mainly designed based on graph signal processing and transform aspect which usually suffer from some limitations, such as over-smoothing, over-squashing and non-robustness, etc. As we all know that Convolution Neural Networks (CNNs) have received great success in many computer vision and machine learning. One main aspect is that CNNs leverage many learnable convolution filters (kernels) to obtain rich feature descriptors and thus can have high capacity to encode complex patterns in visual data analysis. Also, CNNs are flexible in designing their network architecture, such as MobileNet, ResNet, Xception, etc. Therefore, it is natural to arise a question: can we design graph convolutional layer as flexibly as that in CNNs? Innovatively, in this paper, we consider connecting GCNs with CNNs deeply from a general perspective of depthwise separable convolution operation. Specifically, we show that GCN and GAT indeed perform some specific depthwise separable convolution operations. This novel interpretation enables us to better understand the connections between GCNs (GCN, GAT) and CNNs and further inspires us to design more Unified GCNs (UGCNs). As two showcases, we implement two UGCNs, i.e., Separable UGCN (S-UGCN) and General UGCN (G-UGCN) for graph data representation and learning. Promising experiments on several graph representation benchmarks demonstrate the effectiveness and advantages of the proposed UGCNs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:230:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Ziyan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_B/0/1/0/all/0/1">Bo Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Luo_B/0/1/0/all/0/1">Bin Luo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:197;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12301";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Designing Perceptual Puzzles by Differentiating Probabilistic Programs. (arXiv:2204.12301v1 [cs.GR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12301";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:526:"<p>We design new visual illusions by finding "adversarial examples" for principled models of human perception -- specifically, for probabilistic models, which treat vision as Bayesian inference. To perform this search efficiently, we design a differentiable probabilistic programming language, whose API exposes MCMC inference as a first-class differentiable function. We demonstrate our method by automatically creating illusions for three features of human vision: color constancy, size constancy, and face perception. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:346:" <a href="http://arxiv.org/find/cs/1/au:+Chandra_K/0/1/0/all/0/1">Kartik Chandra</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_T/0/1/0/all/0/1">Tzu-Mao Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Tenenbaum_J/0/1/0/all/0/1">Joshua Tenenbaum</a>, <a href="http://arxiv.org/find/cs/1/au:+Ragan_Kelley_J/0/1/0/all/0/1">Jonathan Ragan-Kelley</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:198;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12302";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:151:"From Limited Annotated Raw Material Data to Quality Production Data: A Case Study in the Milk Industry (Technical Report). (arXiv:2204.12302v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12302";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1066:"<p>Industry 4.0 offers opportunities to combine multiple sensor data sources using IoT technologies for better utilization of raw material in production lines. A common belief that data is readily available (the big data phenomenon), is oftentimes challenged by the need to effectively acquire quality data under severe constraints. In this paper we propose a design methodology, using active learning to enhance learning capabilities, for building a model of production outcome using a constrained amount of raw material training data. The proposed methodology extends existing active learning methods to effectively solve regression-based learning problems and may serve settings where data acquisition requires excessive resources in the physical world. We further suggest a set of qualitative measures to analyze learners performance. The proposed methodology is demonstrated using an actual application in the milk industry, where milk is gathered from multiple small milk farms and brought to a dairy production plant to be processed into cottage cheese. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:401:" <a href="http://arxiv.org/find/cs/1/au:+Shraga_R/0/1/0/all/0/1">Roee Shraga</a>, <a href="http://arxiv.org/find/cs/1/au:+Katz_G/0/1/0/all/0/1">Gil Katz</a>, <a href="http://arxiv.org/find/cs/1/au:+Badian_Y/0/1/0/all/0/1">Yael Badian</a>, <a href="http://arxiv.org/find/cs/1/au:+Calderon_N/0/1/0/all/0/1">Nitay Calderon</a>, <a href="http://arxiv.org/find/cs/1/au:+Gal_A/0/1/0/all/0/1">Avigdor Gal</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:199;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12303";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:70:"On converses to the polynomial method. (arXiv:2204.12303v1 [quant-ph])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12303";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1011:"<p>A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. A natural question posed there asks if bounded quartic polynomials can be approximated by $2$-query quantum algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue of the result of Aaronson et al. in this case. We improve on this result in the following ways: First, we point out and fix a small error in the construction that has to do with a translation from cubic to quartic polynomials. Second, we give a completely explicit example based on techniques from additive combinatorics. Third, we show that the result still holds when we allow for a small additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP'19) for the completely-bounded approximate degree. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:200:" <a href="http://arxiv.org/find/quant-ph/1/au:+Briet_J/0/1/0/all/0/1">Jop Briët</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Gutierrez_F/0/1/0/all/0/1">Francisco Escudero Gutiérrez</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:200;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12307";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Scheduling of Sensor Transmissions Based on Value of Information for Summary Statistics. (arXiv:2204.12307v1 [cs.NI])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12307";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:735:"<p>The optimization of Value of Information (VoI) in sensor networks integrates awareness of the measured process in the communication system. However, most existing scheduling algorithms do not consider the specific needs of monitoring applications, but define VoI as a generic Mean Square Error (MSE) of the whole system state regardless of the relevance of individual components. In this work, we consider different summary statistics, i.e., different functions of the state, which can represent the useful information for a monitoring process, particularly in safety and industrial applications. We propose policies that minimize the estimation error for different summary statistics, showing significant gains by simulation. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:430:" <a href="http://arxiv.org/find/cs/1/au:+Chiariotti_F/0/1/0/all/0/1">Federico Chiariotti</a>, <a href="http://arxiv.org/find/cs/1/au:+Kalor_A/0/1/0/all/0/1">Anders E. Kalør</a>, <a href="http://arxiv.org/find/cs/1/au:+Holm_J/0/1/0/all/0/1">Josefine Holm</a>, <a href="http://arxiv.org/find/cs/1/au:+Soret_B/0/1/0/all/0/1">Beatriz Soret</a>, <a href="http://arxiv.org/find/cs/1/au:+Popovski_P/0/1/0/all/0/1">Petar Popovski</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:201;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12308";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Supervised Attention in Sequence-to-Sequence Models for Speech Recognition. (arXiv:2204.12308v1 [eess.AS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12308";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:893:"<p>Attention mechanism in sequence-to-sequence models is designed to model the alignments between acoustic features and output tokens in speech recognition. However, attention weights produced by models trained end to end do not always correspond well with actual alignments, and several studies have further argued that attention weights might not even correspond well with the relevance attribution of frames. Regardless, visual similarity between attention weights and alignments is widely used during training as an indicator of the models quality. In this paper, we treat the correspondence between attention weights and alignments as a learning problem by imposing a supervised attention loss. Experiments have shown significant improved performance, suggesting that learning the alignments well during training critically determines the performance of sequence-to-sequence models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:161:" <a href="http://arxiv.org/find/eess/1/au:+Yang_G/0/1/0/all/0/1">Gene-Ping Yang</a>, <a href="http://arxiv.org/find/eess/1/au:+Tang_H/0/1/0/all/0/1">Hao Tang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:202;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12309";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:149:"Information Retrieval in Friction Stir Welding of Aluminum Alloys by using Natural Language Processing based Algorithms. (arXiv:2204.12309v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12309";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1158:"<p>Text summarization is a technique for condensing a big piece of text into a few key elements that give a general impression of the content. When someone requires a quick and precise summary of a large amount of information, it becomes vital. If done manually, summarizing text can be costly and time-consuming. Natural Language Processing (NLP) is the sub-division of Artificial Intelligence that narrows down the gap between technology and human cognition by extracting the relevant information from the pile of data. In the present work, scientific information regarding the Friction Stir Welding of Aluminum alloys was collected from the abstract of scholarly research papers. For extracting the relevant information from these research abstracts four Natural Language Processing based algorithms i.e. Latent Semantic Analysis (LSA), Luhn Algorithm, Lex Rank Algorithm, and KL-Algorithm were used. In order to evaluate the accuracy score of these algorithms, Recall-Oriented Understudy for Gisting Evaluation (ROUGE) was used. The results showed that the Luhn Algorithm resulted in the highest f1-Score of 0.413 in comparison to other algorithms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:84:" <a href="http://arxiv.org/find/cs/1/au:+Mishra_A/0/1/0/all/0/1">Akshansh Mishra</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:203;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12311";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Formalizing a Diophantine Representation of the Set of Prime Numbers. (arXiv:2204.12311v1 [math.NT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12311";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:901:"<p>The DPRM (Davis-Putnam-Robinson-Matiyasevich) theorem is the main step in the negative resolution of Hilbert's 10th problem. Almost three decades of work on the problem have resulted in several equally surprising results. These include the existence of diophantine equations with a reduced number of variables, as well as the explicit construction of polynomials that represent specific sets, in particular the set of primes. In this work, we formalize these constructions in the Mizar system. We focus on the set of prime numbers and its explicit representation using 10 variables. It is the smallest representation known today. For this, we show that the exponential function is diophantine, together with the same properties for the binomial coefficient and factorial. This formalization is the next step in the research on formal approaches to diophantine sets following the DPRM theorem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:172:" <a href="http://arxiv.org/find/math/1/au:+Pak_K/0/1/0/all/0/1">Karol Pąk</a>, <a href="http://arxiv.org/find/math/1/au:+Kaliszyk_C/0/1/0/all/0/1">Cezary Kaliszyk</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:204;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12316";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:132:"Systematicity, Compositionality and Transitivity of Deep NLP Models: a Metamorphic Testing Perspective. (arXiv:2204.12316v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12316";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:914:"<p>Metamorphic testing has recently been used to check the safety of neural NLP models. Its main advantage is that it does not rely on a ground truth to generate test cases. However, existing studies are mostly concerned with robustness-like metamorphic relations, limiting the scope of linguistic properties they can test. We propose three new classes of metamorphic relations, which address the properties of systematicity, compositionality and transitivity. Unlike robustness, our relations are defined over multiple source inputs, thus increasing the number of test cases that we can produce by a polynomial factor. With them, we test the internal consistency of state-of-the-art NLP models, and show that they do not always behave according to their expected linguistic properties. Lastly, we introduce a novel graphical notation that efficiently summarises the inner structure of metamorphic relations. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:426:" <a href="http://arxiv.org/find/cs/1/au:+Manino_E/0/1/0/all/0/1">Edoardo Manino</a>, <a href="http://arxiv.org/find/cs/1/au:+Rozanova_J/0/1/0/all/0/1">Julia Rozanova</a>, <a href="http://arxiv.org/find/cs/1/au:+Carvalho_D/0/1/0/all/0/1">Danilo Carvalho</a>, <a href="http://arxiv.org/find/cs/1/au:+Freitas_A/0/1/0/all/0/1">Andre Freitas</a>, <a href="http://arxiv.org/find/cs/1/au:+Cordeiro_L/0/1/0/all/0/1">Lucas Cordeiro</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:205;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12318";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:116:"Evaluating the Quality of a Synthesized Motion with the Fr\'echet Motion Distance. (arXiv:2204.12318v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12318";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:90:"<p>Evaluating the Quality of a Synthesized Motion with the Fr\'echet Motion Distance </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:250:" <a href="http://arxiv.org/find/cs/1/au:+Maiorca_A/0/1/0/all/0/1">Antoine Maiorca</a>, <a href="http://arxiv.org/find/cs/1/au:+Yoon_Y/0/1/0/all/0/1">Youngwoo Yoon</a>, <a href="http://arxiv.org/find/cs/1/au:+Dutoit_T/0/1/0/all/0/1">Thierry Dutoit</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:206;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12322";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"RAPQ: Rescuing Accuracy for Power-of-Two Low-bit Post-training Quantization. (arXiv:2204.12322v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12322";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1403:"<p>We introduce a Power-of-Two post-training quantization( PTQ) method for deep neural network that meets hardware requirements and does not call for long-time retraining. PTQ requires a small set of calibration data and is easier for deployment, but results in lower accuracy than Quantization-Aware Training( QAT). Power-of-Two quantization can convert the multiplication introduced by quantization and dequantization to bit-shift that is adopted by many efficient accelerators. However, the Power-of-Two scale has fewer candidate values, which leads to more rounding or clipping errors. We propose a novel Power-of-Two PTQ framework, dubbed RAPQ, which dynamically adjusts the Power-of-Two scales of the whole network instead of statically determining them layer by layer. It can theoretically trade off the rounding error and clipping error of the whole network. Meanwhile, the reconstruction method in RAPQ is based on the BN information of every unit. Extensive experiments on ImageNet prove the excellent performance of our proposed method. Without bells and whistles, RAPQ can reach accuracy of 65% and 48% on ResNet-18 and MobileNetV2 respectively with weight INT2 activation INT4. We are the first to propose PTQ for the more constrained but hardware-friendly Power-of-Two quantization and prove that it can achieve nearly the same accuracy as SOTA PTQ method. The code will be released. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:464:" <a href="http://arxiv.org/find/cs/1/au:+Yao_H/0/1/0/all/0/1">Hongyi Yao</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_P/0/1/0/all/0/1">Pu Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_J/0/1/0/all/0/1">Jian Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xiangcheng Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_C/0/1/0/all/0/1">Chenying Xie</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_B/0/1/0/all/0/1">Bingzhang Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:207;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12326";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering. (arXiv:2204.12326v1 [cs.IR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12326";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1543:"<p>Recent years have witnessed the great accuracy performance of graph-based Collaborative Filtering (CF) models for recommender systems. By taking the user-item interaction behavior as a graph, these graph-based CF models borrow the success of Graph Neural Networks (GNN), and iteratively perform neighborhood aggregation to propagate the collaborative signals. While conventional CF models are known for facing the challenges of the popularity bias that favors popular items, one may wonder "Whether the existing graph-based CF models alleviate or exacerbate popularity bias of recommender systems?" To answer this question, we first investigate the two-fold performances w.r.t. accuracy and novelty for existing graph-based CF methods. The empirical results show that symmetric neighborhood aggregation adopted by most existing graph-based CF models exacerbate the popularity bias and this phenomenon becomes more serious as the depth of graph propagation increases. Further, we theoretically analyze the cause of popularity bias for graph-based CF. Then, we propose a simple yet effective plugin, namely r-AdjNorm, to achieve an accuracy-novelty trade-off by controlling the normalization strength in the neighborhood aggregation process. Meanwhile, r-AdjNorm can be smoothly applied to the existing graph-based CF backbones without additional computation. Finally, experimental results on three benchmark datasets show that our proposed method can improve novelty without sacrificing accuracy under various graph-based CF backbones. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:767:" <a href="http://arxiv.org/find/cs/1/au:+Zhao_M/0/1/0/all/0/1">Minghao Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_L/0/1/0/all/0/1">Le Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_Y/0/1/0/all/0/1">Yile Liang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_L/0/1/0/all/0/1">Lei Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jian Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_Q/0/1/0/all/0/1">Qilin Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_K/0/1/0/all/0/1">Kai Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Shen_X/0/1/0/all/0/1">Xudong Shen</a>, <a href="http://arxiv.org/find/cs/1/au:+Lv_T/0/1/0/all/0/1">Tangjie Lv</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_R/0/1/0/all/0/1">Runze Wu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:208;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12330";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:54:"Twin-width VII: groups. (arXiv:2204.12330v1 [math.GR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12330";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1067:"<p>Twin-width is a recently introduced graph parameter with applications in algorithmics, combinatorics, and finite model theory. For graphs of bounded degree, finiteness of twin-width is preserved by quasi-isometry. Thus, through Cayley graphs, it defines a group invariant. We prove that groups which are abelian, hyperbolic, ordered, solvable, or with polynomial growth, have finite twin-width. Twin-width can be characterised by excluding patterns in the self-action by product of the group elements. Based on this characterisation, we propose a strengthening called uniform twin-width, which is stable under constructions such as group extensions, direct products, and direct limits. </p> <p>The existence of finitely generated groups with infinite twin-width is not immediate. We construct one using a result of Osajda on embeddings of graphs into groups. This implies the existence of a class of finite graphs with unbounded twin-width but containing $2^{O(n)} \cdot n!$ graphs on vertex set $\{1,\dots,n\}$, settling a question asked in a previous work. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:361:" <a href="http://arxiv.org/find/math/1/au:+Bonnet_E/0/1/0/all/0/1">Édouard Bonnet</a>, <a href="http://arxiv.org/find/math/1/au:+Geniet_C/0/1/0/all/0/1">Colin Geniet</a>, <a href="http://arxiv.org/find/math/1/au:+Tessera_R/0/1/0/all/0/1">Romain Tessera</a>, <a href="http://arxiv.org/find/math/1/au:+Thomasse_S/0/1/0/all/0/1">Stéphan Thomassé</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:209;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12333";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:141:"An Algorithm for the Labeling and Interactive Visualization of the Cerebrovascular System of Ischemic Strokes. (arXiv:2204.12333v1 [eess.IV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12333";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1853:"<p>During the diagnosis of ischemic strokes, the Circle of Willis and its surrounding vessels are the arteries of interest. Their visualization in case of an acute stroke is often enabled by Computed Tomography Angiography (CTA). Still, the identification and analysis of the cerebral arteries remain time consuming in such scans due to a large number of peripheral vessels which may disturb the visual impression. In previous work we proposed VirtualDSA++, an algorithm designed to segment and label the cerebrovascular tree on CTA scans. Especially with stroke patients, labeling is a delicate procedure, as in the worst case whole hemispheres may not be present due to impeded perfusion. Hence, we extended the labeling mechanism for the cerebral arteries to identify occluded vessels. In the work at hand, we place the algorithm in a clinical context by evaluating the labeling and occlusion detection on stroke patients, where we have achieved labeling sensitivities comparable to other works between 92\,\% and 95\,\%. To the best of our knowledge, ours is the first work to address labeling and occlusion detection at once, whereby a sensitivity of 67\,\% and a specificity of 81\,\% were obtained for the latter. VirtualDSA++ also automatically segments and models the intracranial system, which we further used in a deep learning driven follow up work. We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features. Exemplary, we derive in detail, firstly, the interactive planning of vascular interventions like the mechanical thrombectomy and secondly, the interactive suppression of vessel structures that are not of interest in diagnosing strokes (like veins). We discuss both features as well as further possibilities emerging from the proposed concept. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:600:" <a href="http://arxiv.org/find/eess/1/au:+Thamm_F/0/1/0/all/0/1">Florian Thamm</a>, <a href="http://arxiv.org/find/eess/1/au:+Jurgens_M/0/1/0/all/0/1">Markus Jürgens</a>, <a href="http://arxiv.org/find/eess/1/au:+Taubmann_O/0/1/0/all/0/1">Oliver Taubmann</a>, <a href="http://arxiv.org/find/eess/1/au:+Thamm_A/0/1/0/all/0/1">Aleksandra Thamm</a>, <a href="http://arxiv.org/find/eess/1/au:+Rist_L/0/1/0/all/0/1">Leonhard Rist</a>, <a href="http://arxiv.org/find/eess/1/au:+Ditt_H/0/1/0/all/0/1">Hendrik Ditt</a>, <a href="http://arxiv.org/find/eess/1/au:+Maier_A/0/1/0/all/0/1">Andreas Maier</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:210;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12338";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Generating Topological Structure of Floorplans from Room Attributes. (arXiv:2204.12338v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12338";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:961:"<p>Analysis of indoor spaces requires topological information. In this paper, we propose to extract topological information from room attributes using what we call Iterative and adaptive graph Topology Learning (ITL). ITL progressively predicts multiple relations between rooms; at each iteration, it improves node embeddings, which in turn facilitates generation of a better topological graph structure. This notion of iterative improvement of node embeddings and topological graph structure is in the same spirit as \cite{chen2020iterative}. However, while \cite{chen2020iterative} computes the adjacency matrix based on node similarity, we learn the graph metric using a relational decoder to extract room correlations. Experiments using a new challenging indoor dataset validate our proposed method. Qualitative and quantitative evaluation for layout topology prediction and floorplan generation applications also demonstrate the effectiveness of ITL. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:478:" <a href="http://arxiv.org/find/cs/1/au:+Yu_Y/0/1/0/all/0/1">Yin Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Will_H/0/1/0/all/0/1">Hutchcroft Will</a>, <a href="http://arxiv.org/find/cs/1/au:+Naji_K/0/1/0/all/0/1">Khosravan Naji</a>, <a href="http://arxiv.org/find/cs/1/au:+Ivaylo_B/0/1/0/all/0/1">Boyadzhiev Ivaylo</a>, <a href="http://arxiv.org/find/cs/1/au:+Yun_F/0/1/0/all/0/1">Fu Yun</a>, <a href="http://arxiv.org/find/cs/1/au:+Bing_K/0/1/0/all/0/1">Kang Sing Bing</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:211;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12340";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:76:"Lattices Without a Big Constant and With Noise. (arXiv:2204.12340v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12340";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:208:"<p>We show how Frieze's analysis of subset sum solving using lattices can be done with out any large constants and without flipping. We apply the variant without the large constant to inputs with noise. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:169:" <a href="http://arxiv.org/find/cs/1/au:+Gortler_S/0/1/0/all/0/1">Steven J. Gortler</a>, <a href="http://arxiv.org/find/cs/1/au:+Theran_L/0/1/0/all/0/1">Louis Theran</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:212;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12344";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:84:"REDCHO: Robust Exact Dynamic Consensus of High Order. (arXiv:2204.12344v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12344";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:794:"<p>This article addresses the problem of average consensus in a multi-agent system when the desired consensus quantity is a time varying signal. Recently, the EDCHO protocol leveraged high order sliding modes to achieve exact consensus under a constrained set of initial conditions, limiting its applicability to static networks. In this work, we propose REDCHO, an extension of the previous protocol which is robust to mismatch in the initial conditions, making it suitable to use cases in which connection and disconnection of agents is possible. The convergence properties of the protocol are formally explored. Finally, the effectiveness and advantages of our proposal are shown with concrete simulation examples showing the benefits of REDCHO against other methods in the literature. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:295:" <a href="http://arxiv.org/find/eess/1/au:+Aldana_Lopez_R/0/1/0/all/0/1">Rodrigo Aldana-López</a>, <a href="http://arxiv.org/find/eess/1/au:+Aragues_R/0/1/0/all/0/1">Rosario Aragüés</a>, <a href="http://arxiv.org/find/eess/1/au:+Sagues_C/0/1/0/all/0/1">Carlos Sagüés</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:213;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12347";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Restricted Black-box Adversarial Attack Against DeepFake Face Swapping. (arXiv:2204.12347v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12347";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1657:"<p>DeepFake face swapping presents a significant threat to online security and social media, which can replace the source face in an arbitrary photo/video with the target face of an entirely different person. In order to prevent this fraud, some researchers have begun to study the adversarial methods against DeepFake or face manipulation. However, existing works focus on the white-box setting or the black-box setting driven by abundant queries, which severely limits the practical application of these methods. To tackle this problem, we introduce a practical adversarial attack that does not require any queries to the facial image forgery model. Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models. Specially, we propose the Transferable Cycle Adversary Generative Adversarial Network (TCA-GAN) to construct the adversarial perturbation for disrupting unknown DeepFake systems. We also present a novel post-regularization module for enhancing the transferability of generated adversarial examples. To comprehensively measure the effectiveness of our approaches, we construct a challenging benchmark of DeepFake adversarial attacks for future development. Extensive experiments impressively show that the proposed adversarial attack method makes the visual quality of DeepFake face images plummet so that they are easier to be detected by humans and algorithms. Moreover, we demonstrate that the proposed algorithm can be generalized to offer face image protection against various face translation methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:313:" <a href="http://arxiv.org/find/cs/1/au:+Dong_J/0/1/0/all/0/1">Junhao Dong</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yuan Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Lai_J/0/1/0/all/0/1">Jianhuang Lai</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_X/0/1/0/all/0/1">Xiaohua Xie</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:214;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12357";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Direct 3D Printing of Soft Fluidic Actuators with Graded Porosity. (arXiv:2204.12357v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12357";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1689:"<p>New additive manufacturing methods are needed to realize more complex soft robots. One example is soft fluidic robotics, which exploits fluidic power and stiffness gradients. Porous structures are an interesting type for this approach, as they are flexible and allow for fluid transport. Within this work, the Infill-Foam (InFoam) is proposed to print structures with graded porosity by liquid rope coiling (LRC). By exploiting LRC, the InFoam method could exploit the repeatable coiling patterns to print structures. To this end, only the characterization of the relation between nozzle height and coil radius and the extruded length were necessary (at a fixed temperature). Then by adjusting the nozzle height and/or extrusion speed the porosity of the printed structure could be set. The InFoam method was demonstrated by printing porous structures using styrene-ethylene-butylene-styrene (SEBS) with porosities ranging from 46\% to 89\%. In compression tests, the cubes showed large changes in modulus (more than 200 times), density (-89\% compared to bulk), and energy dissipation. The InFoam method combined coiling and normal plotting to realize a large range of porosity gradients. This grading was exploited to realize rectangular structures with varying deformation patterns, which included twisting, contraction, and bending. Furthermore, the InFoam method was shown to be capable of programming the behavior of bending actuators by varying the porosity. Both the output force and stroke showed correlations similar to those of the cubes. Thus, the InFoam method can fabricate and program the mechanical behavior of a soft fluidic (porous) actuator by grading porosity. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:261:" <a href="http://arxiv.org/find/cs/1/au:+Willemstein_N/0/1/0/all/0/1">Nick Willemstein</a>, <a href="http://arxiv.org/find/cs/1/au:+Kooij_H/0/1/0/all/0/1">Herman van der Kooij</a>, <a href="http://arxiv.org/find/cs/1/au:+Sadeghi_A/0/1/0/all/0/1">Ali Sadeghi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:215;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12358";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:69:"Polylogarithmic Sketches for Clustering. (arXiv:2204.12358v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12358";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1034:"<p>Given $n$ points in $\ell_p^d$, we consider the problem of partitioning points into $k$ clusters with associated centers. The cost of a clustering is the sum of $p^{\text{th}}$ powers of distances of points to their cluster centers. For $p \in [1,2]$, we design sketches of size poly$(\log(nd),k,1/\epsilon)$ such that the cost of the optimal clustering can be estimated to within factor $1+\epsilon$, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly$(\log(nd),k,1/\epsilon)$. We also obtain a distributed memory algorithm, where the $n$ points are arbitrarily partitioned amongst $m$ machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on $d$ for $p \in [1,2)$. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:174:" <a href="http://arxiv.org/find/cs/1/au:+Charikar_M/0/1/0/all/0/1">Moses Charikar</a>, <a href="http://arxiv.org/find/cs/1/au:+Waingarten_E/0/1/0/all/0/1">Erik Waingarten</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:216;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12363";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:76:"Causal Transportability for Visual Recognition. (arXiv:2204.12363v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12363";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1165:"<p>Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious correlations between non-robust features and labels can be changed in a new environment. By analyzing procedures for out-of-distribution generalization with a causal graph, we show that standard classifiers fail because the association between images and labels is not transportable across settings. However, we then show that the causal effect, which severs all sources of confounding, remains invariant across domains. This motivates us to develop an algorithm to estimate the causal effect for image classification, which is transportable (i.e., invariant) across source and target environments. Without observing additional variables, we show that we can derive an estimand for the causal effect under empirical assumptions using representations in deep models as proxies. Theoretical analysis, empirical results, and visualizations show that our approach captures causal invariances and improves overall generalization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:563:" <a href="http://arxiv.org/find/cs/1/au:+Mao_C/0/1/0/all/0/1">Chengzhi Mao</a>, <a href="http://arxiv.org/find/cs/1/au:+Xia_K/0/1/0/all/0/1">Kevin Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">James Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_H/0/1/0/all/0/1">Hao Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_J/0/1/0/all/0/1">Junfeng Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Bareinboim_E/0/1/0/all/0/1">Elias Bareinboim</a>, <a href="http://arxiv.org/find/cs/1/au:+Vondrick_C/0/1/0/all/0/1">Carl Vondrick</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:217;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12365";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Explaining Adverse Actions in Credit Decisions Using Shapley Decomposition. (arXiv:2204.12365v1 [stat.ML])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12365";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1277:"<p>When a financial institution declines an application for credit, an adverse action (AA) is said to occur. The applicant is then entitled to an explanation for the negative decision. This paper focuses on credit decisions based on a predictive model for probability of default and proposes a methodology for AA explanation. The problem involves identifying the important predictors responsible for the negative decision and is straightforward when the underlying model is additive. However, it becomes non-trivial even for linear models with interactions. We consider models with low-order interactions and develop a simple and intuitive approach based on first principles. We then show how the methodology generalizes to the well-known Shapely decomposition and the recently proposed concept of Baseline Shapley (B-Shap). Unlike other Shapley techniques in the literature for local interpretability of machine learning results, B-Shap is computationally tractable since it involves just function evaluations. An illustrative case study is used to demonstrate the usefulness of the method. The paper also discusses situations with highly correlated predictors and desirable properties of fitted models in the credit-lending context, such as monotonicity and continuity. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:491:" <a href="http://arxiv.org/find/stat/1/au:+Nair_V/0/1/0/all/0/1">Vijayan N. Nair</a>, <a href="http://arxiv.org/find/stat/1/au:+Feng_T/0/1/0/all/0/1">Tianshu Feng</a>, <a href="http://arxiv.org/find/stat/1/au:+Hu_L/0/1/0/all/0/1">Linwei Hu</a>, <a href="http://arxiv.org/find/stat/1/au:+Zhang_Z/0/1/0/all/0/1">Zach Zhang</a>, <a href="http://arxiv.org/find/stat/1/au:+Chen_J/0/1/0/all/0/1">Jie Chen</a>, <a href="http://arxiv.org/find/stat/1/au:+Sudjianto_A/0/1/0/all/0/1">Agus Sudjianto</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:218;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12366";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Robust Audio-Visual Instance Discrimination via Active Contrastive Set Mining. (arXiv:2204.12366v1 [cs.MM])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12366";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1199:"<p>The recent success of audio-visual representation learning can be largely attributed to their pervasive property of audio-visual synchronization, which can be used as self-annotated supervision. As a state-of-the-art solution, Audio-Visual Instance Discrimination (AVID) extends instance discrimination to the audio-visual realm. Existing AVID methods construct the contrastive set by random sampling based on the assumption that the audio and visual clips from all other videos are not semantically related. We argue that this assumption is rough, since the resulting contrastive sets have a large number of faulty negatives. In this paper, we overcome this limitation by proposing a novel Active Contrastive Set Mining (ACSM) that aims to mine the contrastive sets with informative and diverse negatives for robust AVID. Moreover, we also integrate a semantically-aware hard-sample mining strategy into our ACSM. The proposed ACSM is implemented into two most recent state-of-the-art AVID methods and significantly improves their performance. Extensive experiments conducted on both action and sound recognition on multiple datasets show the remarkably improved performance of our method. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:556:" <a href="http://arxiv.org/find/cs/1/au:+Xuan_H/0/1/0/all/0/1">Hanyu Xuan</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yihong Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_S/0/1/0/all/0/1">Shuo Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_Z/0/1/0/all/0/1">Zhiliang Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_J/0/1/0/all/0/1">Jian Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yan_Y/0/1/0/all/0/1">Yan Yan</a>, <a href="http://arxiv.org/find/cs/1/au:+Alameda_Pineda_X/0/1/0/all/0/1">Xavier Alameda-Pineda</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:219;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:144:"ROMA: Cross-Domain Region Similarity Matching for Unpaired Nighttime Infrared to Daytime Visible Video Translation. (arXiv:2204.12367v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12367";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1912:"<p>Infrared cameras are often utilized to enhance the night vision since the visible light cameras exhibit inferior efficacy without sufficient illumination. However, infrared data possesses inadequate color contrast and representation ability attributed to its intrinsic heat-related imaging principle. This makes it arduous to capture and analyze information for human beings, meanwhile hindering its application. Although, the domain gaps between unpaired nighttime infrared and daytime visible videos are even huger than paired ones that captured at the same time, establishing an effective translation mapping will greatly contribute to various fields. In this case, the structural knowledge within nighttime infrared videos and semantic information contained in the translated daytime visible pairs could be utilized simultaneously. To this end, we propose a tailored framework ROMA that couples with our introduced cRoss-domain regiOn siMilarity mAtching technique for bridging the huge gaps. To be specific, ROMA could efficiently translate the unpaired nighttime infrared videos into fine-grained daytime visible ones, meanwhile maintain the spatiotemporal consistency via matching the cross-domain region similarity. Furthermore, we design a multiscale region-wise discriminator to distinguish the details from synthesized visible results and real references. Extensive experiments and evaluations for specific applications indicate ROMA outperforms the state-of-the-art methods. Moreover, we provide a new and challenging dataset encouraging further research for unpaired nighttime infrared and daytime visible video translation, named InfraredCity. In particular, it consists of 9 long video clips including City, Highway and Monitor scenarios. All clips could be split into 603,142 frames in total, which are 20 times larger than the recently released daytime infrared-to-visible dataset IRVI. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:466:" <a href="http://arxiv.org/find/cs/1/au:+Yu_Z/0/1/0/all/0/1">Zhenjie Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_K/0/1/0/all/0/1">Kai Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_S/0/1/0/all/0/1">Shuang Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_B/0/1/0/all/0/1">Bingfeng Han</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_C/0/1/0/all/0/1">Chi Harold Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_S/0/1/0/all/0/1">Shuigen Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:220;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12368";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:79:"Coalgebraic Partition Refinement For All Functors. (arXiv:2204.12368v1 [cs.FL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12368";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1168:"<p>Coalgebraic partition refinement generalizes classical transition system minimization to general system types equipped with a coalgebraic equivalence notion, subsuming strong, weighted, and probabilistic bisimilarity. The asymptotically fastest algorithm requires an ad-hoc condition on the system type and uses large amounts of memory, limiting the size of the transition system that can be handled. A subsequent distributed algorithm is able to handle larger systems by distributing the memory requirement over several compute nodes, but this algorithm is asymptotically slower. We present an algorithm that is applicable to all computable set functors, and runs in time $O(k^2 n \log n)$, where n is the number of states and k is the number of transitions per state. This algorithm is asymptotically slower than the fastest algorithm by a factor of k, but asymptotically faster than the distributed algorithm by a factor of n. In practice, our algorithm uses much less time and memory on existing benchmarks. Transition systems that previously required half an hour on HPC clusters can be minimized in seconds on a single core of a laptop by our algorithm. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:174:" <a href="http://arxiv.org/find/cs/1/au:+Jacobs_J/0/1/0/all/0/1">Jules Jacobs</a>, <a href="http://arxiv.org/find/cs/1/au:+Wissmann_T/0/1/0/all/0/1">Thorsten Wißmann</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:221;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12371";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:132:"Social learning spontaneously emerges by searching optimal heuristics with deep reinforcement learning. (arXiv:2204.12371v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12371";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1100:"<p>How have individuals of social animals in nature evolved to learn from each other, and what would be the optimal strategy for such learning in a specific environment? Here, we address both problems by employing a deep reinforcement learning model to optimize the social learning strategies (SLSs) of agents in a cooperative game in a multi-dimensional landscape. Throughout the training for maximizing the overall payoff, we find that the agent spontaneously learns various concepts of social learning, such as copying, focusing on frequent and well-performing neighbors, self-comparison, and the importance of balancing between individual and social learning, without any explicit guidance or prior knowledge about the system. The SLS from a fully trained agent outperforms all of the traditional, baseline SLSs in terms of mean payoff. We demonstrate the superior performance of the reinforcement learning agent in various environments, including temporally changing environments and real social networks, which also verifies the adaptability of our framework to different social settings. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:160:" <a href="http://arxiv.org/find/cs/1/au:+Ha_S/0/1/0/all/0/1">Seungwoong Ha</a>, <a href="http://arxiv.org/find/cs/1/au:+Jeong_H/0/1/0/all/0/1">Hawoong Jeong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:222;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12376";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Structural Rules and Algebraic Properties of Intersection Types. (arXiv:2204.12376v1 [cs.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12376";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:781:"<p>In this paper we define several notions of term expansion, used to define terms with less sharing, but with the same computational properties of terms typable in an intersection type system. Expansion relates terms typed by associative, commutative and idempotent intersections with terms typed in the Curry type system and the relevant type system, terms typed by non-idempotent intersections with terms typed in the affine and linear type systems and terms typed by non-idempotent and non-commutative intersections with terms typed in an ordered type system. Finally, we show how idempotent intersection is related with the contraction rule, commutative intersection with the exchange rule and associative intersection with the lack of structural rules in a type system. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:169:" <a href="http://arxiv.org/find/cs/1/au:+Alves_S/0/1/0/all/0/1">Sandra Alves</a>, <a href="http://arxiv.org/find/cs/1/au:+Florido_M/0/1/0/all/0/1">Mário Florido</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:223;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12378";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"Performance Analysis of Out-of-Distribution Detection on Trained Neural Networks. (arXiv:2204.12378v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12378";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1557:"<p>Several areas have been improved with Deep Learning during the past years. Implementing Deep Neural Networks (DNN) for non-safety related applications have shown remarkable achievements over the past years; however, for using DNNs in safety critical applications, we are missing approaches for verifying the robustness of such models. A common challenge for DNNs occurs when exposed to out-of-distribution samples that are outside of the scope of a DNN, but which result in high confidence outputs despite no prior knowledge of such input. </p> <p>In this paper, we analyze three methods that separate between in- and out-of-distribution data, called supervisors, on four well-known DNN architectures. We find that the outlier detection performance improves with the quality of the model. We also analyse the performance of the particular supervisors during the training procedure by applying the supervisor at a predefined interval to investigate its performance as the training proceeds. We observe that understanding the relationship between training results and supervisor performance is crucial to improve the model's robustness and to indicate, what input samples require further measures to improve the robustness of a DNN. In addition, our work paves the road towards an instrument for safety argumentation for safety critical applications. This paper is an extended version of our previous work presented at 2019 SEAA (cf. [1]); here, we elaborate on the used metrics, add an additional supervisor and test them on two additional datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:529:" <a href="http://arxiv.org/find/cs/1/au:+Henriksson_J/0/1/0/all/0/1">Jens Henriksson</a>, <a href="http://arxiv.org/find/cs/1/au:+Berger_C/0/1/0/all/0/1">Christian Berger</a>, <a href="http://arxiv.org/find/cs/1/au:+Borg_M/0/1/0/all/0/1">Markus Borg</a>, <a href="http://arxiv.org/find/cs/1/au:+Tornberg_L/0/1/0/all/0/1">Lars Tornberg</a>, <a href="http://arxiv.org/find/cs/1/au:+Sathyamoorthy_S/0/1/0/all/0/1">Sankar Raman Sathyamoorthy</a>, <a href="http://arxiv.org/find/cs/1/au:+Englund_C/0/1/0/all/0/1">Cristofer Englund</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:224;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12379";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:152:"An analytically divergence-free collocation method for the incompressible Navier-Stokes equations on the rotating sphere. (arXiv:2204.12379v1 [math.NA])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12379";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:846:"<p>In this work, we develop a high-order collocation method using radial basis function (RBF) for the incompressible Navier-Stokes equation (NSE) on the rotating sphere. The method is based on solving the projection of the NSE on the space of divergence-free functions. For that, we use matrix valued kernel functions which allow an analytically divergence-free approximation of the velocity field. Using kernel functions which lead to rotation-free approximations, the pressure can be recovered by a simple kernel exchange in one of the occurring approximations, without solving an additional Poisson problem. We establish precise error estimates for the velocity and the pressure functions for the semi-discretised solution. In the end, we give a short estimate of the numerical cost and apply the new method to an experimental test case. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:80:" <a href="http://arxiv.org/find/math/1/au:+Franz_T/0/1/0/all/0/1">Tino Franz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:225;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12380";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:121:"Multi-task Learning for Concurrent Prediction of Thermal Comfort, Sensation, and Preference. (arXiv:2204.12380v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12380";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1890:"<p>Indoor thermal comfort immensely impacts the health and performance of occupants. Therefore, researchers and engineers have proposed numerous computational models to estimate thermal comfort (TC). Given the impetus toward energy efficiency, the current focus is on data-driven TC prediction solutions that leverage state-of-the-art machine learning (ML) algorithms. However, an indoor occupant's perception of indoor thermal comfort (TC) is subjective and multi-dimensional. Different aspects of TC are represented by various standard metrics/scales viz., thermal sensation (TSV), thermal comfort (TCV), and thermal preference (TPV). The current ML-based TC prediction solutions adopt the Single-task Learning approach, i.e., one prediction model per metric. Consequently, solutions often focus on only one TC metric. Moreover, when several metrics are considered, multiple TC models for a single indoor space lead to conflicting predictions, making real-world deployment infeasible. This work addresses these problems. With the vision toward energy conservation and real-world application, naturally ventilated primary school classrooms are considered. First, month-long field experiments are conducted in 5 schools and 14 classrooms, including 512 unique student participants. Further, "DeepComfort," a Multi-task Learning inspired deep-learning model is proposed. DeepComfort predicts multiple TC output metrics viz., TSV, TPV, and TCV, simultaneously, through a single model. It demonstrates high F1-scores, Accuracy (>90%), and generalization capability when validated on the ASHRAE-II database and the dataset created in this study. DeepComfort is also shown to outperform 6 popular metric-specific single-task machine learning algorithms. To the best of our knowledge, this work is the first application of Multi-task Learning to thermal comfort prediction in classrooms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:328:" <a href="http://arxiv.org/find/cs/1/au:+Lala_B/0/1/0/all/0/1">Betty Lala</a>, <a href="http://arxiv.org/find/cs/1/au:+Rizk_H/0/1/0/all/0/1">Hamada Rizk</a>, <a href="http://arxiv.org/find/cs/1/au:+Kala_S/0/1/0/all/0/1">Srikant Manas Kala</a>, <a href="http://arxiv.org/find/cs/1/au:+Hagishima_A/0/1/0/all/0/1">Aya Hagishima</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:226;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12384";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Qunity: A Unified Language for Quantum and Classical Computing. (arXiv:2204.12384v1 [cs.PL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12384";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1152:"<p>We introduce Qunity, a new quantum programming language designed around the central goal of treating quantum computing as a natural generalization of classical computing. Qunity presents a unified syntax where familiar programming constructs can have both quantum and classical effects. For example, one can use sum types to implement the direct sum of linear operators, exception handling syntax to implement projective measurements, and aliasing to induce entanglement. Further, Qunity takes advantage of the overlooked BQP subroutine theorem, allowing one to construct reversible subroutines from irreversible quantum algorithms through the uncomputation of "garbage" outputs. Unlike existing languages that enable quantum aspects with a separate add-on (e.g., gates added to a classical language), we unify quantum and classical computing through novel compositional semantics based on Kraus operators. We present Qunity's syntax, type system, and denotational semantics, showing how it can cleanly express several quantum algorithms. We also outline how Qunity could be compiled to OpenQASM, demonstrating the realizability of our design. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:245:" <a href="http://arxiv.org/find/cs/1/au:+Voichick_F/0/1/0/all/0/1">Finn Voichick</a>, <a href="http://arxiv.org/find/cs/1/au:+Rand_R/0/1/0/all/0/1">Robert Rand</a>, <a href="http://arxiv.org/find/cs/1/au:+Hicks_M/0/1/0/all/0/1">Michael Hicks</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:227;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12386";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:119:"Learning Meta Word Embeddings by Unsupervised Weighted Concatenation of Source Embeddings. (arXiv:2204.12386v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12386";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1054:"<p>Given multiple source word embeddings learnt using diverse algorithms and lexical resources, meta word embedding learning methods attempt to learn more accurate and wide-coverage word embeddings. </p> <p>Prior work on meta-embedding has repeatedly discovered that simple vector concatenation of the source embeddings to be a competitive baseline. </p> <p>However, it remains unclear as to why and when simple vector concatenation can produce accurate meta-embeddings. </p> <p>We show that weighted concatenation can be seen as a spectrum matching operation between each source embedding and the meta-embedding, minimising the pairwise inner-product loss. </p> <p>Following this theoretical analysis, we propose two \emph{unsupervised} methods to learn the optimal concatenation weights for creating meta-embeddings from a given set of source embeddings. </p> <p>Experimental results on multiple benchmark datasets show that the proposed weighted concatenated meta-embedding methods outperform previously proposed meta-embedding learning methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:90:" <a href="http://arxiv.org/find/cs/1/au:+Bollegala_D/0/1/0/all/0/1">Danushka Bollegala</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:228;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12390";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Quantum-classical convolutional neural networks in radiological image classification. (arXiv:2204.12390v1 [quant-ph])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12390";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1061:"<p>Quantum machine learning is receiving significant attention currently, but its usefulness in comparison to classical machine learning techniques for practical applications remains unclear. However, there are indications that certain quantum machine learning algorithms might result in improved training capabilities with respect to their classical counterparts - which might be particularly beneficial in situations with little training data available. Such situations naturally arise in medical classification tasks. Within this paper, different hybrid quantum-classical convolutional neural networks (QCCNN) with varying quantum circuit designs and encoding techniques are proposed. They are applied to two- and three-dimensional medical imaging data, e.g. featuring different, potentially malign, lesions in computed tomography scans. The performance of these QCCNNs is already similar to the one of their classical counterparts - therefore encouraging further studies towards the direction of applying these algorithms within medical imaging tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:467:" <a href="http://arxiv.org/find/quant-ph/1/au:+Matic_A/0/1/0/all/0/1">Andrea Matic</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Monnet_M/0/1/0/all/0/1">Maureen Monnet</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Lorenz_J/0/1/0/all/0/1">Jeanette Miriam Lorenz</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Schachtner_B/0/1/0/all/0/1">Balthasar Schachtner</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Messerer_T/0/1/0/all/0/1">Thomas Messerer</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:229;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12393";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"On Fragile Features and Batch Normalization in Adversarial Training. (arXiv:2204.12393v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12393";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1038:"<p>Modern deep learning architecture utilize batch normalization (BN) to stabilize training and improve accuracy. It has been shown that the BN layers alone are surprisingly expressive. In the context of robustness against adversarial examples, however, BN is argued to increase vulnerability. That is, BN helps to learn fragile features. Nevertheless, BN is still used in adversarial training, which is the de-facto standard to learn robust features. In order to shed light on the role of BN in adversarial training, we investigate to what extent the expressiveness of BN can be used to robustify fragile features in comparison to random features. On CIFAR10, we find that adversarially fine-tuning just the BN layers can result in non-trivial adversarial robustness. Adversarially training only the BN layers from scratch, in contrast, is not able to convey meaningful adversarial robustness. Our results indicate that fragile features can be used to learn models with moderate adversarial robustness, while random features cannot </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:252:" <a href="http://arxiv.org/find/cs/1/au:+Walter_N/0/1/0/all/0/1">Nils Philipp Walter</a>, <a href="http://arxiv.org/find/cs/1/au:+Stutz_D/0/1/0/all/0/1">David Stutz</a>, <a href="http://arxiv.org/find/cs/1/au:+Schiele_B/0/1/0/all/0/1">Bernt Schiele</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:230;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12397";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:76:"Tolerant Bipartiteness Testing in Dense Graphs. (arXiv:2204.12397v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12397";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1186:"<p>Bipartite testing has been a central problem in the area of property testing since its inception in the seminal work of Goldreich, Goldwasser and Ron [FOCS'96 and JACM'98]. Though the non-tolerant version of bipartite testing has been extensively studied in the literature, the tolerant variant is not well understood. In this paper, we consider the following version of tolerant bipartite testing: Given a parameter $\varepsilon \in (0,1)$ and access to the adjacency matrix of a graph $G$, we can decide whether $G$ is $\varepsilon$-close to being bipartite or $G$ is at least $(2+\Omega(1))\varepsilon$-far from being bipartite, by performing $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon ^3}\right)$ queries and in $2^{\widetilde{\mathcal{O}}(1/\varepsilon)}$ time. This improves upon the state-of-the-art query and time complexities of this problem of $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon ^6}\right)$ and $2^{\widetilde{\mathcal{O}}(1/\varepsilon^2)}$, respectively, from the work of Alon, Fernandez de la Vega, Kannan and Karpinski (STOC'02 and JCSS'03), where $\widetilde{\mathcal{O}}(\cdot)$ hides a factor polynomial in $\log \frac{1}{\varepsilon}$. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:338:" <a href="http://arxiv.org/find/cs/1/au:+Ghosh_A/0/1/0/all/0/1">Arijit Ghosh</a>, <a href="http://arxiv.org/find/cs/1/au:+Mishra_G/0/1/0/all/0/1">Gopinath Mishra</a>, <a href="http://arxiv.org/find/cs/1/au:+Raychaudhury_R/0/1/0/all/0/1">Rahul Raychaudhury</a>, <a href="http://arxiv.org/find/cs/1/au:+Sen_S/0/1/0/all/0/1">Sayantan Sen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:231;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12399";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"Streaming Algorithms for High-Dimensional Robust Statistics. (arXiv:2204.12399v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12399";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1015:"<p>We study high-dimensional robust statistics tasks in the streaming model. A recent line of work obtained computationally efficient algorithms for a range of high-dimensional robust estimation tasks. Unfortunately, all previous algorithms require storing the entire dataset, incurring memory at least quadratic in the dimension. In this work, we develop the first efficient streaming algorithms for high-dimensional robust statistics with near-optimal memory requirements (up to logarithmic factors). Our main result is for the task of high-dimensional robust mean estimation in (a strengthening of) Huber's contamination model. We give an efficient single-pass streaming algorithm for this task with near-optimal error guarantees and space complexity nearly-linear in the dimension. As a corollary, we obtain streaming algorithms with near-optimal space complexity for several more complex tasks, including robust covariance estimation, robust regression, and more generally robust stochastic optimization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:342:" <a href="http://arxiv.org/find/cs/1/au:+Diakonikolas_I/0/1/0/all/0/1">Ilias Diakonikolas</a>, <a href="http://arxiv.org/find/cs/1/au:+Kane_D/0/1/0/all/0/1">Daniel M. Kane</a>, <a href="http://arxiv.org/find/cs/1/au:+Pensia_A/0/1/0/all/0/1">Ankit Pensia</a>, <a href="http://arxiv.org/find/cs/1/au:+Pittas_T/0/1/0/all/0/1">Thanasis Pittas</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:232;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12402";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:109:"Understanding the Impact of Edge Cases from Occluded Pedestrians for ML Systems. (arXiv:2204.12402v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12402";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1203:"<p>Machine learning (ML)-enabled approaches are considered a substantial support technique of detection and classification of obstacles of traffic participants in self-driving vehicles. Major breakthroughs have been demonstrated the past few years, even covering complete end-to-end data processing chain from sensory inputs through perception and planning to vehicle control of acceleration, breaking and steering. YOLO (you-only-look-once) is a state-of-the-art perception neural network (NN) architecture providing object detection and classification through bounding box estimations on camera images. As the NN is trained on well annotated images, in this paper we study the variations of confidence levels from the NN when tested on hand-crafted occlusion added to a test set. We compare regular pedestrian detection to upper and lower body detection. Our findings show that the two NN using only partial information perform similarly well like the NN for the full body when the full body NN's performance is 0.75 or better. Furthermore and as expected, the network, which is only trained on the lower half body is least prone to disturbances from occlusions of the upper half and vice versa. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:255:" <a href="http://arxiv.org/find/cs/1/au:+Henriksson_J/0/1/0/all/0/1">Jens Henriksson</a>, <a href="http://arxiv.org/find/cs/1/au:+Berger_C/0/1/0/all/0/1">Christian Berger</a>, <a href="http://arxiv.org/find/cs/1/au:+Ursing_S/0/1/0/all/0/1">Stig Ursing</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:233;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12404";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Knowledge Transfer in Engineering Fleets: Hierarchical Bayesian Modelling for Multi-Task Learning. (arXiv:2204.12404v1 [stat.ML])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12404";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:845:"<p>We propose a population-level analysis to address issues of data sparsity when building predictive models of engineering infrastructure. By sharing information between similar assets, hierarchical Bayesian modelling is used to improve the survival analysis of a truck fleet (hazard curves) and power prediction in a wind farm (power curves). In each example, a set of correlated functions are learnt over the asset fleet, in a combined inference, to learn a population model. Parameter estimation is improved when sub-fleets of assets are allowed to share correlated information at different levels in the hierarchy. In turn, groups with incomplete data automatically borrow statistical strength from those that are data-rich. The correlations can be inspected to inform which assets share information for which effect (i.e. parameter). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:582:" <a href="http://arxiv.org/find/stat/1/au:+Bull_L/0/1/0/all/0/1">L.A. Bull</a>, <a href="http://arxiv.org/find/stat/1/au:+Dhada_M/0/1/0/all/0/1">M. Dhada</a>, <a href="http://arxiv.org/find/stat/1/au:+Steinert_O/0/1/0/all/0/1">O. Steinert</a>, <a href="http://arxiv.org/find/stat/1/au:+Lindgren_T/0/1/0/all/0/1">T. Lindgren</a>, <a href="http://arxiv.org/find/stat/1/au:+Parlikad_A/0/1/0/all/0/1">A.K. Parlikad</a>, <a href="http://arxiv.org/find/stat/1/au:+Duncan_A/0/1/0/all/0/1">A.B. Duncan</a>, <a href="http://arxiv.org/find/stat/1/au:+Girolami_M/0/1/0/all/0/1">M. Girolami</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:234;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12406";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"A survey on attention mechanisms for medical applications: are we moving towards better algorithms?. (arXiv:2204.12406v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12406";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1499:"<p>The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning (including Transformers) for several medical applications. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:361:" <a href="http://arxiv.org/find/cs/1/au:+Goncalves_T/0/1/0/all/0/1">Tiago Gonçalves</a>, <a href="http://arxiv.org/find/cs/1/au:+Rio_Torto_I/0/1/0/all/0/1">Isabel Rio-Torto</a>, <a href="http://arxiv.org/find/cs/1/au:+Teixeira_L/0/1/0/all/0/1">Luís F. Teixeira</a>, <a href="http://arxiv.org/find/cs/1/au:+Cardoso_J/0/1/0/all/0/1">Jaime S. Cardoso</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:235;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12408";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:119:"MILES: Visual BERT Pre-training with Injected Language Semantics for Video-text Retrieval. (arXiv:2204.12408v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12408";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1396:"<p>Dominant pre-training work for video-text retrieval mainly adopt the "dual-encoder" architectures to enable efficient retrieval, where two separate encoders are used to contrast global video and text representations, but ignore detailed local semantics. The recent success of image BERT pre-training with masked visual modeling that promotes the learning of local visual context, motivates a possible solution to address the above limitation. In this work, we for the first time investigate masked visual modeling in video-text pre-training with the "dual-encoder" architecture. We perform Masked visual modeling with Injected LanguagE Semantics (MILES) by employing an extra snapshot video encoder as an evolving "tokenizer" to produce reconstruction targets for masked video patch prediction. Given the corrupted video, the video encoder is trained to recover text-aligned features of the masked patches via reasoning with the visible regions along the spatial and temporal dimensions, which enhances the discriminativeness of local visual features and the fine-grained cross-modality alignment. Our method outperforms state-of-the-art methods for text-to-video retrieval on four datasets with both zero-shot and fine-tune evaluation protocols. Our approach also surpasses the baseline models significantly on zero-shot action recognition, which can be cast as video-to-text retrieval. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:616:" <a href="http://arxiv.org/find/cs/1/au:+Ge_Y/0/1/0/all/0/1">Yuying Ge</a>, <a href="http://arxiv.org/find/cs/1/au:+Ge_Y/0/1/0/all/0/1">Yixiao Ge</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xihui Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_A/0/1/0/all/0/1">Alex Jinpeng Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_J/0/1/0/all/0/1">Jianping Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Shan_Y/0/1/0/all/0/1">Ying Shan</a>, <a href="http://arxiv.org/find/cs/1/au:+Qie_X/0/1/0/all/0/1">Xiaohu Qie</a>, <a href="http://arxiv.org/find/cs/1/au:+Luo_P/0/1/0/all/0/1">Ping Luo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:236;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"Distributed controller synthesis for deadlock avoidance. (arXiv:2204.12409v1 [cs.LO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12409";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:731:"<p>We consider the distributed control synthesis problem for systems with locks. The goal is to find local controllers so that the global system does not deadlock. With no restriction this problem is undecidable even for three processes each using a fixed number of locks. We propose two restrictions that make distributed control decidable. The first one is to allow each process to use at most two locks. The problem then becomes Sigma2P-complete, and even in PTIME under some additional assumptions. The dining philosophers problem satisfies these assumptions. The second restriction is a nested usage of locks. In this case the synthesis problem is NEXPTIME-complete. The drinking philosophers problem falls in this case. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:340:" <a href="http://arxiv.org/find/cs/1/au:+Gimbert_H/0/1/0/all/0/1">Hugo Gimbert</a>, <a href="http://arxiv.org/find/cs/1/au:+Mascle_C/0/1/0/all/0/1">Corto Mascle</a>, <a href="http://arxiv.org/find/cs/1/au:+Muscholl_A/0/1/0/all/0/1">Anca Muscholl</a>, <a href="http://arxiv.org/find/cs/1/au:+Walukiewicz_I/0/1/0/all/0/1">Igor Walukiewicz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:237;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12415";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Automatic Monitoring of Fruit Ripening Rooms by UHF RFID Sensor Network and Machine Learning. (arXiv:2204.12415v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12415";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:784:"<p>Accelerated ripening through the exposure of fruits to controlled environmental conditions and gases is nowadays one of the most assessed food technologies, especially for climacteric and exotic products. However, a fine granularity control of the process and consequently of the quality of the goods is still missing, so the management of the ripening rooms is mainly based on qualitative estimations only. Following the modern paradigms of Industry 4.0, this contribution proposes a non-destructive RFID-based system for the automatic evaluation of the live ripening of avocados. The system, coupled with a properly trained automatic classification algorithm based on Support Vector Machines (SVMs), can discriminate the stage of ripening with an accuracy greater than 85%. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:901:" <a href="http://arxiv.org/find/eess/1/au:+Occhiuzzi_C/0/1/0/all/0/1">Cecilia Occhiuzzi</a>, <a href="http://arxiv.org/find/eess/1/au:+Camera_F/0/1/0/all/0/1">Francesca Camera</a>, <a href="http://arxiv.org/find/eess/1/au:+DOrazio_M/0/1/0/all/0/1">Michele D'Orazio</a>, <a href="http://arxiv.org/find/eess/1/au:+DUva_N/0/1/0/all/0/1">Nicola D'Uva</a>, <a href="http://arxiv.org/find/eess/1/au:+Amendola_S/0/1/0/all/0/1">Sara Amendola</a>, <a href="http://arxiv.org/find/eess/1/au:+Bianco_G/0/1/0/all/0/1">Giulio Maria Bianco</a>, <a href="http://arxiv.org/find/eess/1/au:+Miozzi_C/0/1/0/all/0/1">Carolina Miozzi</a>, <a href="http://arxiv.org/find/eess/1/au:+Garavaglia_L/0/1/0/all/0/1">Luigi Garavaglia</a>, <a href="http://arxiv.org/find/eess/1/au:+Martinelli_E/0/1/0/all/0/1">Eugenio Martinelli</a>, <a href="http://arxiv.org/find/eess/1/au:+Marrocco_G/0/1/0/all/0/1">Gaetano Marrocco</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:238;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12416";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"XSS for the Masses: Integrating Security in a Web Programming Course using a Security Scanner. (arXiv:2204.12416v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12416";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1323:"<p>Cybersecurity education is considered an important part of undergraduate computing curricula, but many institutions teach it only in dedicated courses or tracks. This optionality risks students graduating with limited exposure to secure coding practices that are expected in industry. An alternative approach is to integrate cybersecurity concepts across non-security courses, so as to expose students to the interplay between security and other sub-areas of computing. In this paper, we report on our experience of applying the security integration approach to an undergraduate web programming course. In particular, we added a practical introduction to secure coding, which highlighted the OWASP Top 10 vulnerabilities by example, and demonstrated how to identify them using out-of-the-box security scanner tools (e.g. ZAP). Furthermore, we incentivised students to utilise these tools in their own course projects by offering bonus marks. To assess the impact of this intervention, we scanned students' project code over the last three years, finding a reduction in the number of vulnerabilities. Finally, in focus groups and a survey, students shared that our intervention helped to raise awareness, but they also highlighted the importance of grading incentives and the need to teach security content earlier. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:344:" <a href="http://arxiv.org/find/cs/1/au:+Shar_L/0/1/0/all/0/1">Lwin Khin Shar</a>, <a href="http://arxiv.org/find/cs/1/au:+Poskitt_C/0/1/0/all/0/1">Christopher M. Poskitt</a>, <a href="http://arxiv.org/find/cs/1/au:+Shim_K/0/1/0/all/0/1">Kyong Jin Shim</a>, <a href="http://arxiv.org/find/cs/1/au:+Wong_L/0/1/0/all/0/1">Li Ying Leonard Wong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:239;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12418";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Bifrost: End-to-End Evaluation and Optimization of Reconfigurable DNN Accelerators. (arXiv:2204.12418v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12418";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1324:"<p>Reconfigurable accelerators for deep neural networks (DNNs) promise to improve performance such as inference latency. STONNE is the first cycle-accurate simulator for reconfigurable DNN inference accelerators which allows for the exploration of accelerator designs and configuration space. However, preparing models for evaluation and exploring configuration space in STONNE is a manual developer-timeconsuming process, which is a barrier for research. This paper introduces Bifrost, an end-to-end framework for the evaluation and optimization of reconfigurable DNN inference accelerators. Bifrost operates as a frontend for STONNE and leverages the TVM deep learning compiler stack to parse models and automate offloading of accelerated computations. We discuss Bifrost's advantages over STONNE and other tools, and evaluate the MAERI and SIGMA architectures using Bifrost. Additionally, Bifrost introduces a module leveraging AutoTVM to efficiently explore accelerator designs and dataflow mapping space to optimize performance. This is demonstrated by tuning the MAERI architecture and generating efficient dataflow mappings for AlexNet, obtaining an average speedup of $50\times$ for the convolutional layers and $11\times$ for the fully connected layers. Our code is available at www.github.com/gicLAB/bifrost. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:252:" <a href="http://arxiv.org/find/cs/1/au:+Stjerngren_A/0/1/0/all/0/1">Axel Stjerngren</a>, <a href="http://arxiv.org/find/cs/1/au:+Gibson_P/0/1/0/all/0/1">Perry Gibson</a>, <a href="http://arxiv.org/find/cs/1/au:+Cano_J/0/1/0/all/0/1">José Cano</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:240;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12420";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Interpretable Battery Cycle Life Range Prediction Using Early Degradation Data at Cell Level. (arXiv:2204.12420v1 [eess.SY])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12420";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1400:"<p>Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. Various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, management of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a physics-informed Quantile Regression Forest (QRF) model is introduced to make cycle life range prediction with uncertainty quantified as the length of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are tuned with a proposed area-based performance evaluation metric so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance, and partial dependence plot. The final QRF model facilitates dual-criteria decision-making to select the high-cycle-life charging protocol with consideration of both point predictions and uncertainty associated with the prediction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:403:" <a href="http://arxiv.org/find/eess/1/au:+Zhang_H/0/1/0/all/0/1">Huang Zhang</a>, <a href="http://arxiv.org/find/eess/1/au:+Su_Y/0/1/0/all/0/1">Yang Su</a>, <a href="http://arxiv.org/find/eess/1/au:+Altaf_F/0/1/0/all/0/1">Faisal Altaf</a>, <a href="http://arxiv.org/find/eess/1/au:+Wik_T/0/1/0/all/0/1">Torsten Wik</a>, <a href="http://arxiv.org/find/eess/1/au:+Gros_S/0/1/0/all/0/1">Sebastien Gros</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:241;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12421";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:128:"Disambiguation of morpho-syntactic features of African American English -- the case of habitual be. (arXiv:2204.12421v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12421";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:970:"<p>Recent research has highlighted that natural language processing (NLP) systems exhibit a bias against African American speakers. The bias errors are often caused by poor representation of linguistic features unique to African American English (AAE), due to the relatively low probability of occurrence of many such features in training data. We present a workflow to overcome such bias in the case of habitual "be". Habitual "be" is isomorphic, and therefore ambiguous, with other forms of "be" found in both AAE and other varieties of English. This creates a clear challenge for bias in NLP technologies. To overcome the scarcity, we employ a combination of rule-based filters and data augmentation that generate a corpus balanced between habitual and non-habitual instances. With this balanced corpus, we train unbiased machine learning classifiers, as demonstrated on a corpus of AAE transcribed texts, achieving .65 F$_1$ score disambiguating habitual "be". </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:333:" <a href="http://arxiv.org/find/cs/1/au:+Santiago_H/0/1/0/all/0/1">Harrison Santiago</a>, <a href="http://arxiv.org/find/cs/1/au:+Martin_J/0/1/0/all/0/1">Joshua Martin</a>, <a href="http://arxiv.org/find/cs/1/au:+Moeller_S/0/1/0/all/0/1">Sarah Moeller</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_K/0/1/0/all/0/1">Kevin Tang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:242;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12423";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:121:"RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for Adaptive Radiotherapy. (arXiv:2204.12423v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12423";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1716:"<p>The current cancer treatment practice collects multimodal data, such as radiology images, histopathology slides, genomics and clinical data. The importance of these data sources taken individually has fostered the recent raise of radiomics and pathomics, i.e. the extraction of quantitative features from radiology and histopathology images routinely collected to predict clinical outcomes or to guide clinical decisions using artificial intelligence algorithms. Nevertheless, how to combine them into a single multimodal framework is still an open issue. In this work we therefore develop a multimodal late fusion approach that combines hand-crafted features computed from radiomics, pathomics and clinical data to predict radiation therapy treatment outcomes for non-small-cell lung cancer patients. Within this context, we investigate eight different late fusion rules (i.e. product, maximum, minimum, mean, decision template, Dempster-Shafer, majority voting, and confidence rule) and two patient-wise aggregation rules leveraging the richness of information given by computer tomography images and whole-slide scans. The experiments in leave-one-patient-out cross-validation on an in-house cohort of 33 patients show that the proposed multimodal paradigm with an AUC equal to $90.9\%$ outperforms each unimodal approach, suggesting that data integration can advance precision medicine. As a further contribution, we also compare the hand-crafted representations with features automatically computed by deep networks, and the late fusion paradigm with early fusion, another popular multimodal approach. In both cases, the experiments show that the proposed multimodal approach provides the best results. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:669:" <a href="http://arxiv.org/find/cs/1/au:+Tortora_M/0/1/0/all/0/1">Matteo Tortora</a>, <a href="http://arxiv.org/find/cs/1/au:+Cordelli_E/0/1/0/all/0/1">Ermanno Cordelli</a>, <a href="http://arxiv.org/find/cs/1/au:+Sicilia_R/0/1/0/all/0/1">Rosa Sicilia</a>, <a href="http://arxiv.org/find/cs/1/au:+Nibid_L/0/1/0/all/0/1">Lorenzo Nibid</a>, <a href="http://arxiv.org/find/cs/1/au:+Ippolito_E/0/1/0/all/0/1">Edy Ippolito</a>, <a href="http://arxiv.org/find/cs/1/au:+Perrone_G/0/1/0/all/0/1">Giuseppe Perrone</a>, <a href="http://arxiv.org/find/cs/1/au:+Ramella_S/0/1/0/all/0/1">Sara Ramella</a>, <a href="http://arxiv.org/find/cs/1/au:+Soda_P/0/1/0/all/0/1">Paolo Soda</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:243;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12425";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:101:"Bioblox 2.5D -- Developing an Educational Game Based on Protein Docking. (arXiv:2204.12425v1 [cs.HC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12425";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1067:"<p>We present the development process of Bioblox2-5D, an educational biology game aimed at teenagers. The game content refers to protein docking and aims to improve learning about molecular shape complexity, the roles of charges in molecular docking and the scoring function to calculate binding affinity. We developed the game as part of a collaboration between the Computing Department at Goldsmiths, University of London, and the Structural Bioinformatics group at Imperial College London. The team at Imperial provided the content requirements and validated the technical solution adopted in the game. The team at Goldsmiths designed and implemented the content requirements into a fun and stimulating educational puzzle game that supports teaching and motivates students to engage with biology. We illustrate the game design choices, the compromises and solutions that we applied to accomplish the desired learning outcomes. This paper aims to illustrate useful insights and inspirations in the context of educational game development for biology students. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:797:" <a href="http://arxiv.org/find/cs/1/au:+Leymarie_F/0/1/0/all/0/1">Frederic Fol Leymarie</a>, <a href="http://arxiv.org/find/cs/1/au:+Latham_W/0/1/0/all/0/1">William Latham</a>, <a href="http://arxiv.org/find/cs/1/au:+Sternberg_M/0/1/0/all/0/1">Michael J. E. Sternberg</a>, <a href="http://arxiv.org/find/cs/1/au:+Salimbeni_G/0/1/0/all/0/1">Guido Salimbeni</a>, <a href="http://arxiv.org/find/cs/1/au:+Islam_S/0/1/0/all/0/1">Suhail A. Islam</a>, <a href="http://arxiv.org/find/cs/1/au:+Reynolds_C/0/1/0/all/0/1">Christopher Reynolds</a>, <a href="http://arxiv.org/find/cs/1/au:+Cook_C/0/1/0/all/0/1">Charlie Cook</a>, <a href="http://arxiv.org/find/cs/1/au:+Suarez_L/0/1/0/all/0/1">Luis Armas Suarez</a>, <a href="http://arxiv.org/find/cs/1/au:+Leinfellner_R/0/1/0/all/0/1">Richard Leinfellner</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:244;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12426";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:86:"Time-triggered Federated Learning over Wireless Networks. (arXiv:2204.12426v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12426";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1329:"<p>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:396:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_X/0/1/0/all/0/1">Xiaokang Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_Y/0/1/0/all/0/1">Yansha Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Xia_H/0/1/0/all/0/1">Huiyun Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_S/0/1/0/all/0/1">Shaochuan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Bennis_M/0/1/0/all/0/1">Mehdi Bennis</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:245;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12430";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"Federated Progressive Sparsification (Purge, Merge, Tune)+. (arXiv:2204.12430v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12430";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:948:"<p>To improve federated training of neural networks, we develop FedSparsify, a sparsification strategy based on progressive weight magnitude pruning. Our method has several benefits. First, since the size of the network becomes increasingly smaller, computation and communication costs during training are reduced. Second, the models are incrementally constrained to a smaller set of parameters, which facilitates alignment/merging of the local models and improved learning performance at high sparsification rates. Third, the final sparsified model is significantly smaller, which improves inference efficiency and optimizes operations latency during encrypted communication. We show experimentally that FedSparsify learns a subnetwork of both high sparsity and learning performance. Our sparse models can reach a tenth of the size of the original model with the same or better accuracy compared to existing pruning and nonpruning baselines. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:339:" <a href="http://arxiv.org/find/cs/1/au:+Stripelis_D/0/1/0/all/0/1">Dimitris Stripelis</a>, <a href="http://arxiv.org/find/cs/1/au:+Gupta_U/0/1/0/all/0/1">Umang Gupta</a>, <a href="http://arxiv.org/find/cs/1/au:+Steeg_G/0/1/0/all/0/1">Greg Ver Steeg</a>, <a href="http://arxiv.org/find/cs/1/au:+Ambite_J/0/1/0/all/0/1">Jose Luis Ambite</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:246;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12432";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:147:"Encoding Cardiopulmonary Exercise Testing Time Series as Images for Classification using Convolutional Neural Network. (arXiv:2204.12432v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12432";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1290:"<p>Exercise testing has been available for more than a half-century and is a remarkably versatile tool for diagnostic and prognostic information of patients for a range of diseases, especially cardiovascular and pulmonary. With rapid advancements in technology, wearables, and learning algorithm in the last decade, its scope has evolved. Specifically, Cardiopulmonary exercise testing (CPX) is one of the most commonly used laboratory tests for objective evaluation of exercise capacity and performance levels in patients. CPX provides a non-invasive, integrative assessment of the pulmonary, cardiovascular, and skeletal muscle systems involving the measurement of gas exchanges. However, its assessment is challenging, requiring the individual to process multiple time series data points, leading to simplification to peak values and slopes. But this simplification can discard the valuable trend information present in these time series. In this work, we encode the time series as images using the Gramian Angular Field and Markov Transition Field and use it with a convolutional neural network and attention pooling approach for the classification of heart failure and metabolic syndrome patients. Using GradCAMs, we highlight the discriminative features identified by the model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:249:" <a href="http://arxiv.org/find/cs/1/au:+Sharma_Y/0/1/0/all/0/1">Yash Sharma</a>, <a href="http://arxiv.org/find/cs/1/au:+Coronato_N/0/1/0/all/0/1">Nick Coronato</a>, <a href="http://arxiv.org/find/cs/1/au:+Brown_D/0/1/0/all/0/1">Donald E. Brown</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:247;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12433";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:119:"Equivalence and Duality of Polycyclic Codes Associated with Trinomials over Finite Fields. (arXiv:2204.12433v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12433";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:329:"<p>In this paper, several conjectures proposed in [2] are studied, involving the equivalence and duality of polycyclic codes associated with trinomials. According to the results, we give methods to construct isodual and self-dual polycyclic codes, and study the self-orthogonal and dual-containing polycyclic codes over F2. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:306:" <a href="http://arxiv.org/find/cs/1/au:+Shi_M/0/1/0/all/0/1">Minjia Shi</a>, <a href="http://arxiv.org/find/cs/1/au:+Lu_H/0/1/0/all/0/1">Haodong Lu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhou_S/0/1/0/all/0/1">Shuang Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_J/0/1/0/all/0/1">Jiarui Xu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:248;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12436";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"Incentives in Social Decision Schemes with Pairwise Comparison Preferences. (arXiv:2204.12436v1 [cs.GT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12436";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1227:"<p>Social decision schemes (SDSs) map the preferences of individual voters over multiple alternatives to a probability distribution over the alternatives. In order to study properties such as efficiency, strategyproofness, and participation for SDSs, preferences over alternatives are typically lifted to preferences over lotteries using the notion of stochastic dominance (SD). However, requiring strategyproofness or participation with respect to this preference extension only leaves room for rather undesirable SDSs such as random dictatorships. Hence, we focus on the natural but little understood pairwise comparison (PC) preference extension, which postulates that one lottery is preferred to another if the former is more likely to return a preferred outcome. In particular, we settle three open questions raised by Brandt (2017): (i) there is no Condorcet-consistent SDS that satisfies PC-strategyproofness; (ii) there is no anonymous and neutral SDS that satisfies PC-efficiency and PC-strategyproofness; and (iii) there is no anonymous and neutral SDS that satisfies PC-efficiency and strict PC-participation. All three impossibilities require m >= 4 alternatives and turn into possibilities when m <= 3. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:257:" <a href="http://arxiv.org/find/cs/1/au:+Brandt_F/0/1/0/all/0/1">Felix Brandt</a>, <a href="http://arxiv.org/find/cs/1/au:+Lederer_P/0/1/0/all/0/1">Patrick Lederer</a>, <a href="http://arxiv.org/find/cs/1/au:+Suksompong_W/0/1/0/all/0/1">Warut Suksompong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:249;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12440";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"neuro2vec: Masked Fourier Spectrum Prediction for Neurophysiological Representation Learning. (arXiv:2204.12440v1 [eess.SP])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12440";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1317:"<p>Extensive data labeling on neurophysiological signals is often prohibitively expensive or impractical, as it may require particular infrastructure or domain expertise. To address the appetite for data of deep learning methods, we present for the first time a Fourier-based modeling framework for self-supervised pre-training of neurophysiology signals. The intuition behind our approach is simple: frequency and phase distribution of neurophysiology signals reveal the underlying neurophysiological activities of the brain and muscle. Our approach first randomly masks out a portion of the input signal and then predicts the missing information from either spatiotemporal or the Fourier domain. Pre-trained models can be potentially used for downstream tasks such as sleep stage classification using electroencephalogram (EEG) signals and gesture recognition using electromyography (EMG) signals. Unlike contrastive-based methods, which strongly rely on carefully hand-crafted augmentations and siamese structure, our approach works reasonably well with a simple transformer encoder with no augmentation requirements. By evaluating our method on several benchmark datasets, including both EEG and EMG, we show that our modeling approach improves downstream neurophysiological related tasks by a large margin. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:311:" <a href="http://arxiv.org/find/eess/1/au:+Wu_D/0/1/0/all/0/1">Di Wu</a>, <a href="http://arxiv.org/find/eess/1/au:+Li_S/0/1/0/all/0/1">Siyuan Li</a>, <a href="http://arxiv.org/find/eess/1/au:+Yang_J/0/1/0/all/0/1">Jie Yang</a>, <a href="http://arxiv.org/find/eess/1/au:+Sawan_M/0/1/0/all/0/1">Mohamad Sawan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:250;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12441";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"Investigating the Optimal Neural Network Parameters for Decoding. (arXiv:2204.12441v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12441";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:312:"<p>Neural Networks have been proved to work as decoders in telecommunications, so the ways of making it efficient will be investigated in this thesis. The different parameters to maximize the Neural Network Decoder's efficiency will be investigated. The parameters will be tested for inversion errors only. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:94:" <a href="http://arxiv.org/find/cs/1/au:+Maumela_J/0/1/0/all/0/1">Joshua Tshifhiwa Maumela</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:251;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12442";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"Multi-task Deep Neural Networks for Massive MIMO CSI Feedback. (arXiv:2204.12442v1 [cs.IT])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12442";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:953:"<p>Deep learning has been widely applied for the channel state information (CSI) feedback in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. For the typical supervised training of the feedback model, the requirements of large amounts of task-specific labeled data can hardly be satisfied, and the huge training costs and storage usage of the model in multiple scenarios are hindrance for model application. In this letter, a multi-task learning-based approach is proposed to improve the feasibility of the feedback network. An encoder-shared feedback architecture and the corresponding training scheme are further proposed to facilitate the implementation of the multi-task learning approach. The experimental results indicate that the proposed multi-task learning approach can achieve comprehensive feedback performance with considerable reduction of training cost and storage usage of the feedback model. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:386:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_B/0/1/0/all/0/1">Boyuan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_H/0/1/0/all/0/1">Haozhen Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_X/0/1/0/all/0/1">Xin Liang</a>, <a href="http://arxiv.org/find/cs/1/au:+Gu_X/0/1/0/all/0/1">Xinyu Gu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_L/0/1/0/all/0/1">Lin Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:252;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12443";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:99:"A review of Federated Learning in Intrusion Detection Systems for IoT. (arXiv:2204.12443v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12443";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1192:"<p>Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment. The development of deep learning technologies opened the door to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Internet of Things devices. Current approaches rely on powerful centralized servers that receive data from all their parties -- violating basic privacy constraints and substantially affecting response times and operational costs due to the huge communication overheads. To mitigate these issues, Federated Learning emerged as a promising approach where different agents collaboratively train a shared model, neither exposing training data to others nor requiring a compute-intensive centralized infrastructure. This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection. Both technologies are described in detail and current scientific progress is reviewed and categorized. Finally, the paper highlights the limitations present in recent works and presents some future directions for this technology. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:262:" <a href="http://arxiv.org/find/cs/1/au:+Belenguer_A/0/1/0/all/0/1">Aitor Belenguer</a>, <a href="http://arxiv.org/find/cs/1/au:+Navaridas_J/0/1/0/all/0/1">Javier Navaridas</a>, <a href="http://arxiv.org/find/cs/1/au:+Pascual_J/0/1/0/all/0/1">Jose A. Pascual</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:253;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12445";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:112:"Assimilation of magnetic resonance elastography data in an in silico brain model. (arXiv:2204.12445v1 [math.NA])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12445";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1749:"<p>This paper investigates a data assimilation approach for non-invasive quantification of intracranial pressure from partial displacement data, acquired through magnetic resonance elastography. Data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system -- tissue displacements and pressure fields -- is reconstructed from partially available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges, to simulate the corresponding poroelastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions, by appropriately training the reduced-order model. A first application for the estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:717:" <a href="http://arxiv.org/find/math/1/au:+Galarce_F/0/1/0/all/0/1">Felipe Galarce</a>, <a href="http://arxiv.org/find/math/1/au:+Tabelown_K/0/1/0/all/0/1">Karsten Tabelown</a>, <a href="http://arxiv.org/find/math/1/au:+Polzehl_J/0/1/0/all/0/1">Jörg Polzehl</a>, <a href="http://arxiv.org/find/math/1/au:+Papanikas_C/0/1/0/all/0/1">Christos Panagiotis Papanikas</a>, <a href="http://arxiv.org/find/math/1/au:+Vavourakis_V/0/1/0/all/0/1">Vasileios Vavourakis</a>, <a href="http://arxiv.org/find/math/1/au:+Lilaj_L/0/1/0/all/0/1">Ledia Lilaj</a>, <a href="http://arxiv.org/find/math/1/au:+Sack_I/0/1/0/all/0/1">Ingolf Sack</a>, <a href="http://arxiv.org/find/math/1/au:+Caiazzo_A/0/1/0/all/0/1">Alfonso Caiazzo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:254;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12446";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD. (arXiv:2204.12446v1 [stat.ML])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12446";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1508:"<p>We provide sharp path-dependent generalization and excess error guarantees for the full-batch Gradient Decent (GD) algorithm for smooth losses (possibly non-Lipschitz, possibly nonconvex). At the heart of our analysis is a novel generalization error technique for deterministic symmetric algorithms, that implies average output stability and a bounded expected gradient of the loss at termination leads to generalization. This key result shows that small generalization error occurs at stationary points, and allows us to bypass Lipschitz assumptions on the loss prevalent in previous work. For nonconvex, convex and strongly convex losses, we show the explicit dependence of the generalization error in terms of the accumulated path-dependent optimization error, terminal optimization error, number of samples, and number of iterations. For nonconvex smooth losses, we prove that full-batch GD efficiently generalizes close to any stationary point at termination, under the proper choice of a decreasing step size. Further, if the loss is nonconvex but the objective is PL, we derive vanishing bounds on the corresponding excess risk. For convex and strongly-convex smooth losses, we prove that full-batch GD generalizes even for large constant step sizes, and achieves a small excess risk while training fast. Our full-batch GD generalization error and excess risk bounds are significantly tighter than the existing bounds for (stochastic) GD, when the loss is smooth (but possibly non-Lipschitz). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:380:" <a href="http://arxiv.org/find/stat/1/au:+Nikolakakis_K/0/1/0/all/0/1">Konstantinos E. Nikolakakis</a>, <a href="http://arxiv.org/find/stat/1/au:+Haddadpour_F/0/1/0/all/0/1">Farzin Haddadpour</a>, <a href="http://arxiv.org/find/stat/1/au:+Karbasi_A/0/1/0/all/0/1">Amin Karbasi</a>, <a href="http://arxiv.org/find/stat/1/au:+Kalogerias_D/0/1/0/all/0/1">Dionysios S. Kalogerias</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:255;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12451";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:81:"Understanding The Robustness in Vision Transformers. (arXiv:2204.12451v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12451";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1079:"<p>Recent studies show that Vision Transformers(ViTs) exhibit strong robustness against various corruptions. Although this property is partly attributed to the self-attention mechanism, there is still a lack of systematic understanding. In this paper, we examine the role of self-attention in learning robust representations. Our study is motivated by the intriguing properties of the emerging visual grouping in Vision Transformers, which indicates that self-attention may promote robustness through improved mid-level representations. We further propose a family of fully attentional networks (FANs) that strengthen this capability by incorporating an attentional channel processing design. We validate the design comprehensively on various hierarchical backbones. Our model achieves a state of-the-art 87.1% accuracy and 35.8% mCE on ImageNet-1k and ImageNet-C with 76.8M parameters. We also demonstrate state-of-the-art accuracy and robustness in two downstream tasks: semantic segmentation and object detection. Code will be available at https://github.com/NVlabs/FAN. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:564:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_D/0/1/0/all/0/1">Daquan Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_Z/0/1/0/all/0/1">Zhiding Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_E/0/1/0/all/0/1">Enze Xie</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiao_C/0/1/0/all/0/1">Chaowei Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Anandkumar_A/0/1/0/all/0/1">Anima Anandkumar</a>, <a href="http://arxiv.org/find/cs/1/au:+Feng_J/0/1/0/all/0/1">Jiashi Feng</a>, <a href="http://arxiv.org/find/cs/1/au:+Alvarez_J/0/1/0/all/0/1">Jose M. Alvarez</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:256;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12454";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images. (arXiv:2204.12454v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12454";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1006:"<p>Multiple Instance Learning (MIL) methods have become increasingly popular for classifying giga-pixel sized Whole-Slide Images (WSIs) in digital pathology. Most MIL methods operate at a single WSI magnification, by processing all the tissue patches. Such a formulation induces high computational requirements, and constrains the contextualization of the WSI-level representation to a single scale. A few MIL methods extend to multiple scales, but are computationally more demanding. In this paper, inspired by the pathological diagnostic process, we propose ZoomMIL, a method that learns to perform multi-level zooming in an end-to-end manner. ZoomMIL builds WSI representations by aggregating tissue-context information from multiple magnifications. The proposed method outperforms the state-of-the-art MIL methods in WSI classification on two large datasets, while significantly reducing the computational demands with regard to Floating-Point Operations (FLOPs) and processing time by up to 40x. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:593:" <a href="http://arxiv.org/find/cs/1/au:+Thandiackal_K/0/1/0/all/0/1">Kevin Thandiackal</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_B/0/1/0/all/0/1">Boqi Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Pati_P/0/1/0/all/0/1">Pushpak Pati</a>, <a href="http://arxiv.org/find/cs/1/au:+Jaume_G/0/1/0/all/0/1">Guillaume Jaume</a>, <a href="http://arxiv.org/find/cs/1/au:+Williamson_D/0/1/0/all/0/1">Drew F. K. Williamson</a>, <a href="http://arxiv.org/find/cs/1/au:+Gabrani_M/0/1/0/all/0/1">Maria Gabrani</a>, <a href="http://arxiv.org/find/cs/1/au:+Goksel_O/0/1/0/all/0/1">Orcun Goksel</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:257;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12456";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Event Detection Explorer: An Interactive Tool for Event Detection Exploration. (arXiv:2204.12456v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12456";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1129:"<p>Event Detection (ED) is an important task in natural language processing. In the past few years, many datasets have been introduced for advancing ED machine learning models. However, most of these datasets are under-explored because not many tools are available for people to study events, trigger words, and event mention instances systematically and efficiently. In this paper, we present an interactive and easy-to-use tool, namely ED Explorer, for ED dataset and model exploration. ED Explorer consists of an interactive web application, an API, and an NLP toolkit, which can help both domain experts and non-experts to better understand the ED task. We use ED Explorer to analyze a recent proposed large-scale ED datasets (referred to as MAVEN), and discover several underlying problems, including sparsity, label bias, label imbalance, and debatable annotations, which provide us with directions to improve the MAVEN dataset. The ED Explorer can be publicly accessed through <a href="http://edx.leafnlp.org/.">this http URL</a> The demonstration video is available here https://www.youtube.com/watch?v=6QPnxPwxg50. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:478:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_W/0/1/0/all/0/1">Wenlong Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ingale_B/0/1/0/all/0/1">Bhagyashree Ingale</a>, <a href="http://arxiv.org/find/cs/1/au:+Shabir_H/0/1/0/all/0/1">Hamza Shabir</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_T/0/1/0/all/0/1">Tianyi Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_T/0/1/0/all/0/1">Tian Shi</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_P/0/1/0/all/0/1">Ping Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:258;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12458";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Learning Value Functions from Undirected State-only Experience. (arXiv:2204.12458v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12458";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1291:"<p>This paper tackles the problem of learning value functions from undirected state-only experience (state transitions without action labels i.e. (s,s',r) tuples). We first theoretically characterize the applicability of Q-learning in this setting. We show that tabular Q-learning in discrete Markov decision processes (MDPs) learns the same value function under any arbitrary refinement of the action space. This theoretical result motivates the design of Latent Action Q-learning or LAQ, an offline RL method that can learn effective value functions from state-only experience. Latent Action Q-learning (LAQ) learns value functions using Q-learning on discrete latent actions obtained through a latent-variable future prediction model. We show that LAQ can recover value functions that have high correlation with value functions learned using ground truth actions. Value functions learned using LAQ lead to sample efficient acquisition of goal-directed behavior, can be used with domain-specific low-level controllers, and facilitate transfer across embodiments. Our experiments in 5 environments ranging from 2D grid world to 3D visual navigation in realistic environments demonstrate the benefits of LAQ over simpler alternatives, imitation learning oracles, and competing methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:243:" <a href="http://arxiv.org/find/cs/1/au:+Chang_M/0/1/0/all/0/1">Matthew Chang</a>, <a href="http://arxiv.org/find/cs/1/au:+Gupta_A/0/1/0/all/0/1">Arjun Gupta</a>, <a href="http://arxiv.org/find/cs/1/au:+Gupta_S/0/1/0/all/0/1">Saurabh Gupta</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:259;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12463";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"Focal Sparse Convolutional Networks for 3D Object Detection. (arXiv:2204.12463v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12463";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1249:"<p>Non-uniformed 3D sparse data, e.g., point clouds or voxels in different spatial positions, make contribution to the task of 3D object detection in different ways. Existing basic components in sparse convolutional networks (Sparse CNNs) process all sparse data, regardless of regular or submanifold sparse convolution. In this paper, we introduce two new modules to enhance the capability of Sparse CNNs, both are based on making feature sparsity learnable with position-wise importance prediction. They are focal sparse convolution (Focals Conv) and its multi-modal variant of focal sparse convolution with fusion, or Focals Conv-F for short. The new modules can readily substitute their plain counterparts in existing Sparse CNNs and be jointly trained in an end-to-end fashion. For the first time, we show that spatially learnable sparsity in sparse convolution is essential for sophisticated 3D object detection. Extensive experiments on the KITTI, nuScenes and Waymo benchmarks validate the effectiveness of our approach. Without bells and whistles, our results outperform all existing single-model entries on the nuScenes test benchmark at the paper submission time. Code and models are at https://github.com/dvlab-research/FocalsConv. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:386:" <a href="http://arxiv.org/find/cs/1/au:+Chen_Y/0/1/0/all/0/1">Yukang Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yanwei Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_X/0/1/0/all/0/1">Xiangyu Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_J/0/1/0/all/0/1">Jian Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Jia_J/0/1/0/all/0/1">Jiaya Jia</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:260;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12466";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Meta-free representation learning for few-shot learning via stochastic weight averaging. (arXiv:2204.12466v1 [cs.LG])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12466";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1376:"<p>Recent studies on few-shot classification using transfer learning pose challenges to the effectiveness and efficiency of episodic meta-learning algorithms. Transfer learning approaches are a natural alternative, but they are restricted to few-shot classification. Moreover, little attention has been on the development of probabilistic models with well-calibrated uncertainty from few-shot samples, except for some Bayesian episodic learning algorithms. To tackle the aforementioned issues, we propose a new transfer learning method to obtain accurate and reliable models for few-shot regression and classification. The resulting method does not require episodic meta-learning and is called meta-free representation learning (MFRL). MFRL first finds low-rank representation generalizing well on meta-test tasks. Given the learned representation, probabilistic linear models are fine-tuned with few-shot samples to obtain models with well-calibrated uncertainty. The proposed method not only achieves the highest accuracy on a wide range of few-shot learning benchmark datasets but also correctly quantifies the prediction uncertainty. In addition, weight averaging and temperature scaling are effective in improving the accuracy and reliability of few-shot learning in existing meta-learning algorithms with a wide range of learning paradigms and model architectures. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:157:" <a href="http://arxiv.org/find/cs/1/au:+Chen_K/0/1/0/all/0/1">Kuilin Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Lee_C/0/1/0/all/0/1">Chi-Guhn Lee</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:261;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12467";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"A Model-Adaptive Clustering Method for Low-Carbon Energy System Optimization. (arXiv:2204.12467v1 [math.OC])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12467";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1103:"<p>Intermittent renewable energy resources like wind and solar pose great uncertainty of multiple time scales, from minutes to years, on the design and operation of power systems. Energy system optimization models have been developed to find the least-cost solution to matching the uncertainty with flexibility resources. However, input data that capture such multi-time-scale uncertainty are characterized with a long time horizon and bring great difficulty to solving the optimization model. Here we propose an adaptive clustering method based on the decision variables of optimization model to alleviate the computational complexity, in which the energy system is optimized over selected representative time periods instead of the full time horizon. The proposed clustering method is adaptive to various energy system optimization models or settings, because it extracts features from the optimization models. Results show that the proposed clustering method can significantly lower the error in approximating the solution with the full time horizon, compared to traditional clustering methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:421:" <a href="http://arxiv.org/find/math/1/au:+Zhang_Y/0/1/0/all/0/1">Yuheng Zhang</a>, <a href="http://arxiv.org/find/math/1/au:+Cheng_V/0/1/0/all/0/1">Vivian Cheng</a>, <a href="http://arxiv.org/find/math/1/au:+Mallapragada_D/0/1/0/all/0/1">Dharik S. Mallapragada</a>, <a href="http://arxiv.org/find/math/1/au:+Song_J/0/1/0/all/0/1">Jie Song</a>, <a href="http://arxiv.org/find/math/1/au:+He_G/0/1/0/all/0/1">Guannan He</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:262;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12468";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"A Review of In-Memory Space-Efficient Data Structures for Temporal Graphs. (arXiv:2204.12468v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12468";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:708:"<p>Temporal graphs model relationships among entities over time. Recent studies applied temporal graphs to abstract complex systems such as continuous communication among participants of social networks. Often, the amount of data is larger than main memory, therefore, we need specialized structures that balance space usage and query efficiency. In this paper, we review space-efficient data structures that bring large temporal graphs from external memory to primary memory and speed up specialized queries. We found a great variety of studies using data compression techniques and self-indexed compressed data structures. We point further research directions to improve the current state-of-the-art. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:278:" <a href="http://arxiv.org/find/cs/1/au:+Brito_L/0/1/0/all/0/1">Luiz F. A. Brito</a>, <a href="http://arxiv.org/find/cs/1/au:+Travencolo_B/0/1/0/all/0/1">Bruno A. N. Travençolo</a>, <a href="http://arxiv.org/find/cs/1/au:+Albertini_M/0/1/0/all/0/1">Marcelo K. Albertini</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:263;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12471";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:76:"Coarse-to-fine Q-attention with Tree Expansion. (arXiv:2204.12471v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12471";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1021:"<p>Coarse-to-fine Q-attention enables sample-efficient robot manipulation by discretizing the translation space in a coarse-to-fine manner, where the resolution gradually increases at each layer in the hierarchy. Although effective, Q-attention suffers from "coarse ambiguity" - when voxelization is significantly coarse, it is not feasible to distinguish similar-looking objects without first inspecting at a finer resolution. To combat this, we propose to envision Q-attention as a tree that can be expanded and used to accumulate value estimates across the top-k voxels at each Q-attention depth. When our extension, Q-attention with Tree Expansion (QTE), replaces standard Q-attention in the Attention-driven Robot Manipulation (ARM) system, we are able to accomplish a larger set of tasks; especially on those that suffer from "coarse ambiguity". In addition to evaluating our approach across 12 RLBench tasks, we also show that the improved performance is visible in a real-world task involving small objects. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:164:" <a href="http://arxiv.org/find/cs/1/au:+James_S/0/1/0/all/0/1">Stephen James</a>, <a href="http://arxiv.org/find/cs/1/au:+Abbeel_P/0/1/0/all/0/1">Pieter Abbeel</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:264;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12477";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"Digital Twins for Dynamic Management of Blockchain Systems. (arXiv:2204.12477v1 [cs.CR])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12477";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1038:"<p>Blockchain systems are challenged by the so-called Trilemma tradeoff: decentralization, scalability and security. Infrastructure and node configuration, choice of the Consensus Protocol and complexity of the application transactions are cited amongst the factors that affect the tradeoffs balance. Given that Blockchains are complex, dynamic dynamic systems, a dynamic approach to their management and reconfiguration at runtime is deemed necessary to reflect the changes in the state of the infrastructure and application. This paper introduces the utilisation of Digital Twins for this purpose. The novel contribution of the paper is design of a framework and conceptual architecture of a Digital Twin that can assist in maintaining the Trilemma tradeoffs of time critical systems. The proposed Digital Twin is illustrated via an innovative approach to dynamic selection of Consensus Protocols. Simulations results show that the proposed framework can effectively support the dynamic adaptation and management of the Blockchain </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:370:" <a href="http://arxiv.org/find/cs/1/au:+Diamantopoulos_G/0/1/0/all/0/1">Georgios Diamantopoulos</a>, <a href="http://arxiv.org/find/cs/1/au:+Tziritas_N/0/1/0/all/0/1">Nikos Tziritas</a>, <a href="http://arxiv.org/find/cs/1/au:+Bahsoon_R/0/1/0/all/0/1">Rami Bahsoon</a>, <a href="http://arxiv.org/find/cs/1/au:+Theodoropoulos_G/0/1/0/all/0/1">Georgios Theodoropoulos</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:265;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12481";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:78:"From Hyperbolic Geometry Back to Word Embeddings. (arXiv:2204.12481v1 [cs.CL])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12481";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:362:"<p>We choose random points in the hyperbolic disc and claim that these points are already word representations. However, it is yet to be uncovered which point corresponds to which word of the human language of interest. This correspondence can be approximately established using a pointwise mutual information between words and recent alignment techniques. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:357:" <a href="http://arxiv.org/find/cs/1/au:+Nurmukhamedov_S/0/1/0/all/0/1">Sultan Nurmukhamedov</a>, <a href="http://arxiv.org/find/cs/1/au:+Mach_T/0/1/0/all/0/1">Thomas Mach</a>, <a href="http://arxiv.org/find/cs/1/au:+Sheverdin_A/0/1/0/all/0/1">Arsen Sheverdin</a>, <a href="http://arxiv.org/find/cs/1/au:+Assylbekov_Z/0/1/0/all/0/1">Zhenisbek Assylbekov</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:266;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12484";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation. (arXiv:2204.12484v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12484";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1197:"<p>Recently, customized vision transformers have been adapted for human pose estimation and have achieved superior performance with elaborate structures. However, it is still unclear whether plain vision transformers can facilitate pose estimation. In this paper, we take the first step toward answering the question by employing a plain and non-hierarchical vision transformer together with simple deconvolution decoders termed ViTPose for human pose estimation. We demonstrate that a plain vision transformer with MAE pretraining can obtain superior performance after finetuning on human pose estimation datasets. ViTPose has good scalability with respect to model size and flexibility regarding input resolution and token number. Moreover, it can be easily pretrained using the unlabeled pose data without the need for large-scale upstream ImageNet data. Our biggest ViTPose model based on the ViTAE-G backbone with 1 billion parameters obtains the best 80.9 mAP on the MS COCO test-dev set, while the ensemble models further set a new state-of-the-art for human pose estimation, i.e., 81.1 mAP. The source code and models will be released at https://github.com/ViTAE-Transformer/ViTPose. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:311:" <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yufei Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jing Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_Q/0/1/0/all/0/1">Qiming Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_D/0/1/0/all/0/1">Dacheng Tao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:267;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12486";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:159:"Measurement uncertainty and unicity of single number quantities describing the spatial decay of speech level in open-plan offices. (arXiv:2204.12486v1 [cs.SD])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12486";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1568:"<p>The ISO 3382-3 standard (2012) defines single number quantities (SNQs) which evaluate the acoustic quality of open-plan offices, but does not address the issue of measurement uncertainties. This study focusses on the SNQs present in this standard related to spatial decay of speech, i.e. D 2S , L pAS4m and r c. The aim is to provide additional information to the limited literature on the measurement uncertainties of these SNQs by use of both analytical developments and a stochastic approach based on simulations. The accuracy of the analytical developments was studied thanks to simulations of the sound propagation within a series of offices (1 layout, 16 acoustic configurations with different screen heights and different acoustic qualities of screens and ceiling). The SNQs obtained in the simulations cover a wide range: D 2S between 3.4 and 7.5 dB(A), L pAS4m between 40.6 and 51.9 dB(A) and r c between 2.5 and 14.7 m. Therefore, the simulations are representative of a broad set of acoustic qualities. Estimated uncertainties have a magnitude of 0.4 dB(A) for D 2S and vary between 0.4 and 0.7 dB(A) for L pAS4m and between 0.2 and 1.5 m for r c over a measurement path comprising 7 measurement positions. The simulations also raise the question of describing the acoustic quality of an office using a single value for the indicators. The results of the simulations show that in some cases, D 2S values significantly depend on the measurement path, leading to a strong increase of its measurement uncertainty if a unique value is to be considered. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:291:" <a href="http://arxiv.org/find/cs/1/au:+Lenne_L/0/1/0/all/0/1">Lucas Lenne</a> (INRS (Vandoeuvre lès Nancy)), <a href="http://arxiv.org/find/cs/1/au:+Chevret_P/0/1/0/all/0/1">Patrick Chevret</a>, <a href="http://arxiv.org/find/cs/1/au:+Parizet_E/0/1/0/all/0/1">Étienne Parizet</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:268;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12488";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"Distances Release with Differential Privacy in Tree and Grid Graph. (arXiv:2204.12488v1 [cs.DS])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12488";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1666:"<p>Data about individuals may contain private and sensitive information. The differential privacy (DP) was proposed to address the problem of protecting the privacy of each individual while keeping useful information about a population. Sealfon (2016) introduced a private graph model in which the graph topology is assumed to be public while the weight information is assumed to be private. That model can express hidden congestion patterns in a known transportation system. In this paper, we revisit the problem of privately releasing approximate distances between all pairs of vertices in (Sealfon 2016). Our goal is to minimize the additive error, namely the difference between the released distance and actual distance under private setting. We propose improved solutions to that problem for several cases. </p> <p>For the problem of privately releasing all-pairs distances, we show that for tree with depth $h$, we can release all-pairs distances with additive error $O(\log^{1.5} h \cdot \log^{1.5} V)$ for fixed privacy parameter where $V$ the number of vertices in the tree, which improves the previous error bound $O(\log^{2.5} V)$, since the size of $h$ can be as small as $O(\log V)$. Our result implies that a $\log V$ factor is saved, and the additive error in tree can be smaller than the error on array/path. Additionally, for the grid graph with arbitrary edge weights, we also propose a method to release all-pairs distances with additive error $\tilde O(V^{3/4}) $ for fixed privacy parameters. On the application side, many cities like Manhattan are composed of horizontal streets and vertical avenues, which can be modeled as a grid graph. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:151:" <a href="http://arxiv.org/find/cs/1/au:+Fan_C/0/1/0/all/0/1">Chenglin Fan</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_P/0/1/0/all/0/1">Ping Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:269;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12489";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"Sound Localization by Self-Supervised Time Delay Estimation. (arXiv:2204.12489v1 [cs.CV])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12489";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:885:"<p>Sounds reach one microphone in a stereo pair sooner than the other, resulting in an interaural time delay that conveys their directions. Estimating a sound's time delay requires finding correspondences between the signals recorded by each microphone. We propose to learn these correspondences through self-supervision, drawing on recent techniques from visual tracking. We adapt the contrastive random walk of Jabri et al. to learn a cycle-consistent representation from unlabeled stereo sounds, resulting in a model that performs on par with supervised methods on "in the wild" internet recordings. We also propose a multimodal contrastive learning model that solves a visually-guided localization task: estimating the time delay for a particular person in a multi-speaker mixture, given a visual representation of their face. Project site: https://ificl.github.io/stereocrw/ </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:244:" <a href="http://arxiv.org/find/cs/1/au:+Chen_Z/0/1/0/all/0/1">Ziyang Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Fouhey_D/0/1/0/all/0/1">David F. Fouhey</a>, <a href="http://arxiv.org/find/cs/1/au:+Owens_A/0/1/0/all/0/1">Andrew Owens</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:270;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.12490";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:141:"From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation. (arXiv:2204.12490v1 [cs.RO])";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.12490";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1181:"<p>We propose to perform imitation learning for dexterous manipulation with multi-finger robot hand from human demonstrations, and transfer the policy to the real robot hand. We introduce a novel single-camera teleoperation system to collect the 3D demonstrations efficiently with only an iPad and a computer. One key contribution of our system is that we construct a customized robot hand for each user in the physical simulator, which is a manipulator resembling the same kinematics structure and shape of the operator's hand. This provides an intuitive interface and avoid unstable human-robot hand retargeting for data collection, leading to large-scale and high quality data. Once the data is collected, the customized robot hand trajectories can be converted to different specified robot hands (models that are manufactured) to generate training demonstrations. With imitation learning using our data, we show large improvement over baselines with multiple complex manipulation tasks. Importantly, we show our learned policy is significantly more robust when transferring to the real robot. More videos can be found in the https://yzqin.github.io/dex-teleop-imitation . </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:228:" <a href="http://arxiv.org/find/cs/1/au:+Qin_Y/0/1/0/all/0/1">Yuzhe Qin</a>, <a href="http://arxiv.org/find/cs/1/au:+Su_H/0/1/0/all/0/1">Hao Su</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_X/0/1/0/all/0/1">Xiaolong Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:271;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/1906.01566";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"GAMMA: A General Agent Motion Model for Autonomous Driving. (arXiv:1906.01566v6 [cs.RO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/1906.01566";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1291:"<p>This paper presents GAMMA, a general motion prediction model that enables large-scale real-time simulation and planning for autonomous driving. GAMMA models heterogeneous, interactive traffic agents. They operate under diverse road conditions, with various geometric and kinematic constraints. GAMMA treats the prediction task as constrained optimization in traffic agents' velocity space. The objective is to optimize an agent's driving performance, while obeying all the constraints resulting from the agent's kinematics, collision avoidance with other agents, and the environmental context. Further, GAMMA explicitly conditions the prediction on human behavioral states as parameters of the optimization model, in order to account for versatile human behaviors. We evaluated GAMMA on a set of real-world benchmark datasets. The results show that GAMMA achieves high prediction accuracy on both homogeneous and heterogeneous traffic datasets, with sub-millisecond execution time. Further, the computational efficiency and the flexibility of GAMMA enable (i) simulation of mixed urban traffic at many locations worldwide and (ii) planning for autonomous driving in dense traffic with uncertain driver behaviors, both in real-time. The open-source code of GAMMA is available online. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:306:" <a href="http://arxiv.org/find/cs/1/au:+Luo_Y/0/1/0/all/0/1">Yuanfu Luo</a>, <a href="http://arxiv.org/find/cs/1/au:+Cai_P/0/1/0/all/0/1">Panpan Cai</a>, <a href="http://arxiv.org/find/cs/1/au:+Lee_Y/0/1/0/all/0/1">Yiyuan Lee</a>, <a href="http://arxiv.org/find/cs/1/au:+Hsu_D/0/1/0/all/0/1">David Hsu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:272;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/1908.09881";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:115:"Consistently estimating network statistics using Aggregated Relational Data. (arXiv:1908.09881v3 [stat.ME] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/1908.09881";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:774:"<p>Aggregated Relational Data, known as ARD, capture information about a social network by asking a respondent questions of the form "How many people with characteristic X do you know?" rather than asking about connections between each pair of individuals directly. Despite widespread use and a growing literature on ARD methodology, there is still no systematic understanding of when and why ARD should accurately recover features of the unobserved network. This paper provides such a characterization. First, we show that ARD provide sufficient information to consistently estimate the parameters of a common generative model for graphs. Then, we characterize conditions under which ARD should recover individual and graph level statistics from the unobserved graph. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:438:" <a href="http://arxiv.org/find/stat/1/au:+Breza_E/0/1/0/all/0/1">Emily Breza</a>, <a href="http://arxiv.org/find/stat/1/au:+Chandrasekhar_A/0/1/0/all/0/1">Arun G. Chandrasekhar</a>, <a href="http://arxiv.org/find/stat/1/au:+Lubold_S/0/1/0/all/0/1">Shane Lubold</a>, <a href="http://arxiv.org/find/stat/1/au:+McCormick_T/0/1/0/all/0/1">Tyler H. McCormick</a>, <a href="http://arxiv.org/find/stat/1/au:+Pan_M/0/1/0/all/0/1">Mengjie Pan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:273;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/1909.03354";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:154:"Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Comparative Study. (arXiv:1909.03354v5 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/1909.03354";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1865:"<p>Using deep learning models to diagnose cancer from histology data presents several challenges. Cancer grading and localization of regions of interest (ROIs) in these images normally relies on both image- and pixel-level labels, the latter requiring a costly annotation process. Deep weakly-supervised object localization (WSOL) methods provide different strategies for low-cost training of deep learning models. Using only image-class annotations, these methods can be trained to classify an image, and yield class activation maps (CAMs) for ROI localization. This paper provides a review of state-of-art DL methods for WSOL. We propose a taxonomy where these methods are divided into bottom-up and top-down methods according to the information flow in models. Although the latter have seen limited progress, recent bottom-up methods are currently driving much progress with deep WSOL methods. Early works focused on designing different spatial pooling functions. However, these methods reached limited localization accuracy, and unveiled a major limitation -- the under-activation of CAMs which leads to high false negative localization. Subsequent works aimed to alleviate this issue and recover complete object. Representative methods from our taxonomy are evaluated and compared in terms of classification and localization accuracy on two challenging histology datasets. Overall, the results indicate poor localization performance, particularly for generic methods that were initially designed to process natural images. Methods designed to address the challenges of histology data yielded good results. However, all methods suffer from high false positive/negative localization. Four key challenges are identified for the application of deep WSOL methods in histology -- under/over activation of CAMs, sensitivity to thresholding, and model selection. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:507:" <a href="http://arxiv.org/find/cs/1/au:+Rony_J/0/1/0/all/0/1">Jérôme Rony</a>, <a href="http://arxiv.org/find/cs/1/au:+Belharbi_S/0/1/0/all/0/1">Soufiane Belharbi</a>, <a href="http://arxiv.org/find/cs/1/au:+Dolz_J/0/1/0/all/0/1">Jose Dolz</a>, <a href="http://arxiv.org/find/cs/1/au:+Ayed_I/0/1/0/all/0/1">Ismail Ben Ayed</a>, <a href="http://arxiv.org/find/cs/1/au:+McCaffrey_L/0/1/0/all/0/1">Luke McCaffrey</a>, <a href="http://arxiv.org/find/cs/1/au:+Granger_E/0/1/0/all/0/1">Eric Granger</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:274;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2001.09046";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"PDE-based Group Equivariant Convolutional Neural Networks. (arXiv:2001.09046v5 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2001.09046";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1709:"<p>We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. </p> <p>Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. </p> <p>We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. </p> <p>We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:327:" <a href="http://arxiv.org/find/cs/1/au:+Smets_B/0/1/0/all/0/1">Bart Smets</a>, <a href="http://arxiv.org/find/cs/1/au:+Portegies_J/0/1/0/all/0/1">Jim Portegies</a>, <a href="http://arxiv.org/find/cs/1/au:+Bekkers_E/0/1/0/all/0/1">Erik Bekkers</a>, <a href="http://arxiv.org/find/cs/1/au:+Duits_R/0/1/0/all/0/1">Remco Duits</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:275;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2001.11107";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Hamiltonian neural networks for solving equations of motion. (arXiv:2001.11107v5 [physics.comp-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2001.11107";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1118:"<p>There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton's equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic Henon-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error in the predicted phase space trajectories. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:369:" <a href="http://arxiv.org/find/physics/1/au:+Mattheakis_M/0/1/0/all/0/1">Marios Mattheakis</a>, <a href="http://arxiv.org/find/physics/1/au:+Sondak_D/0/1/0/all/0/1">David Sondak</a>, <a href="http://arxiv.org/find/physics/1/au:+Dogra_A/0/1/0/all/0/1">Akshunna S. Dogra</a>, <a href="http://arxiv.org/find/physics/1/au:+Protopapas_P/0/1/0/all/0/1">Pavlos Protopapas</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:276;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2003.12841";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:90:"A Benchmark for Point Clouds Registration Algorithms. (arXiv:2003.12841v3 [cs.RO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2003.12841";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1621:"<p>Point clouds registration is a fundamental step of many point clouds processing pipelines; however, most algorithms are tested on data that are collected ad-hoc and not shared with the research community. These data often cover only a very limited set of use cases; therefore, the results cannot be generalised. Public datasets proposed until now, taken individually, cover only a few kinds of environment and mostly a single sensor. For these reasons, we developed a benchmark, for localization and mapping applications, using multiple publicly available datasets. In this way, we are able to cover many kinds of environment and many kinds of sensor that can produce point clouds. Furthermore, the ground truth has been thoroughly inspected and evaluated to ensure its quality. For some of the datasets, the accuracy of the ground truth measuring system was not reported by the original authors, therefore we estimated it with our own novel method, based on an iterative registration algorithm. Along with the data, we provide a broad set of registration problems, chosen to cover different types of initial misalignment, various degrees of overlap, and different kinds of registration problems. Lastly, we propose a metric to measure the performances of registration algorithms: it combines the commonly used rotation and translation errors together, to allow an objective comparison of the alignments. This work aims at encouraging authors to use a public and shared benchmark, instead of data collected ad-hoc, to ensure objectivity and repeatability, two fundamental characteristics in any scientific field. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:447:" <a href="http://arxiv.org/find/cs/1/au:+Fontana_S/0/1/0/all/0/1">Simone Fontana</a>, <a href="http://arxiv.org/find/cs/1/au:+Cattaneo_D/0/1/0/all/0/1">Daniele Cattaneo</a>, <a href="http://arxiv.org/find/cs/1/au:+Ballardini_A/0/1/0/all/0/1">Augusto Luis Ballardini</a>, <a href="http://arxiv.org/find/cs/1/au:+Vaghi_M/0/1/0/all/0/1">Matteo Vaghi</a>, <a href="http://arxiv.org/find/cs/1/au:+Sorrenti_D/0/1/0/all/0/1">Domenico Giorgio Sorrenti</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:277;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2005.10878";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:147:"Multi-weight Nuclear Norm Minimization for Low-rank Matrix Recovery in Presence of Subspace Prior Information. (arXiv:2005.10878v2 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2005.10878";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1233:"<p>Weighted nuclear norm minimization has been recently recognized as a technique for reconstruction of a low-rank matrix from compressively sampled measurements when some prior information about the column and row subspaces of the matrix is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted nuclear norm minimization when multiple weights are allowed. This setup might be used when one has access to prior subspaces forming multiple angles with the column and row subspaces of the ground-truth matrix. While existing works in this field use a single weight to penalize all the angles, we propose a multi-weight problem which is designed to penalize each angle independently using a distinct weight. Specifically, we prove that our proposed multi-weight problem is stable and robust under weaker conditions for the measurement operator than the analogous conditions for single-weight scenario and standard nuclear norm minimization. Moreover, it provides better reconstruction error than the state of the art methods. We illustrate our results with extensive numerical experiments that demonstrate the advantages of allowing multiple weights in the recovery procedure. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:263:" <a href="http://arxiv.org/find/cs/1/au:+Ardakani_H/0/1/0/all/0/1">Hamideh Sadat Fazael Ardakani</a>, <a href="http://arxiv.org/find/cs/1/au:+Daei_S/0/1/0/all/0/1">Sajad Daei</a>, <a href="http://arxiv.org/find/cs/1/au:+Haddadi_F/0/1/0/all/0/1">Farzan Haddadi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:278;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2006.07200";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Learning to Communicate Using Counterfactual Reasoning. (arXiv:2006.07200v4 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2006.07200";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1150:"<p>Learning to communicate in order to share state information is an active problem in the area of multi-agent reinforcement learning (MARL). The credit assignment problem, the non-stationarity of the communication environment and the creation of influenceable agents are major challenges within this research field which need to be overcome in order to learn a valid communication protocol. This paper introduces the novel multi-agent counterfactual communication learning (MACC) method which adapts counterfactual reasoning in order to overcome the credit assignment problem for communicating agents. Secondly, the non-stationarity of the communication environment while learning the communication Q-function is overcome by creating the communication Q-function using the action policy of the other agents and the Q-function of the action environment. Additionally, a social loss function is introduced in order to create influenceable agents which is required to learn a valid communication protocol. Our experiments show that MACC is able to outperform the state-of-the-art baselines in four different scenarios in the Particle environment. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:679:" <a href="http://arxiv.org/find/cs/1/au:+Vanneste_S/0/1/0/all/0/1">Simon Vanneste</a>, <a href="http://arxiv.org/find/cs/1/au:+Vanneste_A/0/1/0/all/0/1">Astrid Vanneste</a>, <a href="http://arxiv.org/find/cs/1/au:+Mets_K/0/1/0/all/0/1">Kevin Mets</a>, <a href="http://arxiv.org/find/cs/1/au:+Schepper_T/0/1/0/all/0/1">Tom De Schepper</a>, <a href="http://arxiv.org/find/cs/1/au:+Anwar_A/0/1/0/all/0/1">Ali Anwar</a>, <a href="http://arxiv.org/find/cs/1/au:+Mercelis_S/0/1/0/all/0/1">Siegfried Mercelis</a>, <a href="http://arxiv.org/find/cs/1/au:+Latre_S/0/1/0/all/0/1">Steven Latré</a>, <a href="http://arxiv.org/find/cs/1/au:+Hellinckx_P/0/1/0/all/0/1">Peter Hellinckx</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:279;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2008.03946";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"A Large-Scale Chinese Short-Text Conversation Dataset. (arXiv:2008.03946v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2008.03946";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:913:"<p>The advancements of neural dialogue generation models show promising results on modeling short-text conversations. However, training such models usually needs a large-scale high-quality dialogue corpus, which is hard to access. In this paper, we present a large-scale cleaned Chinese conversation dataset, LCCC, which contains a base version (6.8million dialogues) and a large version (12.0 million dialogues). The quality of our dataset is ensured by a rigorous data cleaning pipeline, which is built based on a set of rules and a classifier that is trained on manually annotated 110K dialogue pairs. We also release pre-training dialogue models which are trained on LCCC-base and LCCC-large respectively. The cleaned dataset and the pre-training models will facilitate the research of short-text conversation modeling. All the models and datasets are available at https://github.com/thu-coai/CDial-GPT. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:546:" <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yida Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ke_P/0/1/0/all/0/1">Pei Ke</a>, <a href="http://arxiv.org/find/cs/1/au:+Zheng_Y/0/1/0/all/0/1">Yinhe Zheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_K/0/1/0/all/0/1">Kaili Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Y/0/1/0/all/0/1">Yong Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_X/0/1/0/all/0/1">Xiaoyan Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_M/0/1/0/all/0/1">Minlie Huang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:280;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2010.06097";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"On Riemannian Gradient-Based Methods for Minimax Problems. (arXiv:2010.06097v4 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2010.06097";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1263:"<p>In the paper, we study a class of useful minimax optimization problems on Riemanian manifolds and propose a class of Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose a Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa^2\epsilon^{-2})$ for finding an $\epsilon$-stationary point of the nonconvex strongly-concave minimax problems, where $\kappa$ denotes the condition number. At the same time, we introduce a Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization. In the theoretical analysis, we prove that our RSGDA can achieve a sample complexity of $O(\kappa^4\epsilon^{-4})$. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa^{4}\epsilon^{-3})$. Extensive experimental results on the robust distributional optimization and Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:159:" <a href="http://arxiv.org/find/cs/1/au:+Huang_F/0/1/0/all/0/1">Feihu Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Gao_S/0/1/0/all/0/1">Shangqian Gao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:281;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2010.15776";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Quantum advantage for differential equation analysis. (arXiv:2010.15776v2 [quant-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2010.15776";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1053:"<p>Quantum algorithms for both differential equation solving and for machine learning potentially offer an exponential speedup over all known classical algorithms. However, there also exist obstacles to obtaining this potential speedup in useful problem instances. The essential obstacle for quantum differential equation solving is that outputting useful information may require difficult post-processing, and the essential obstacle for quantum machine learning is that inputting the training set is a difficult task just by itself. In this paper, we demonstrate, when combined, these difficulties solve one another. We show how the output of quantum differential equation solving can serve as the input for quantum machine learning, allowing dynamical analysis in terms of principal components, power spectra, and wavelet decompositions. To illustrate this, we consider continuous time Markov processes on epidemiological and social networks. These quantum algorithms provide an exponential advantage over existing classical Monte Carlo methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:537:" <a href="http://arxiv.org/find/quant-ph/1/au:+Kiani_B/0/1/0/all/0/1">Bobak T. Kiani</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Palma_G/0/1/0/all/0/1">Giacomo De Palma</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Englund_D/0/1/0/all/0/1">Dirk Englund</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Kaminsky_W/0/1/0/all/0/1">William Kaminsky</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Marvian_M/0/1/0/all/0/1">Milad Marvian</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Lloyd_S/0/1/0/all/0/1">Seth Lloyd</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:282;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2011.11201";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:99:"Modular Action Concept Grounding in Semantic Video Prediction. (arXiv:2011.11201v4 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2011.11201";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1404:"<p>Recent works in video prediction have mainly focused on passive forecasting and low-level action-conditional prediction, which sidesteps the learning of interaction between agents and objects. We introduce the task of semantic action-conditional video prediction, which uses semantic action labels to describe those interactions and can be regarded as an inverse problem of action recognition. The challenge of this new task primarily lies in how to effectively inform the model of semantic action information. Inspired by the idea of Mixture of Experts, we embody each abstract label by a structured combination of various visual concept learners and propose a novel video prediction model, Modular Action Concept Network (MAC). Our method is evaluated on two newly designed synthetic datasets, CLEVR-Building-Blocks and Sapien-Kitchen, and one real-world dataset called Tower-Creation. Extensive experiments demonstrate that MAC can correctly condition on given instructions and generate corresponding future frames without need of bounding boxes. We further show that the trained model can make out-of-distribution generalization, be quickly adapted to new object categories and exploit its learnt features for object detection, showing the progression towards higher-level cognitive abilities. More visualizations can be found at <a href="http://www.pair.toronto.edu/mac/.">this http URL</a> </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:401:" <a href="http://arxiv.org/find/cs/1/au:+Yu_W/0/1/0/all/0/1">Wei Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_W/0/1/0/all/0/1">Wenxin Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Yin_S/0/1/0/all/0/1">Songhenh Yin</a>, <a href="http://arxiv.org/find/cs/1/au:+Easterbrook_S/0/1/0/all/0/1">Steve Easterbrook</a>, <a href="http://arxiv.org/find/cs/1/au:+Garg_A/0/1/0/all/0/1">Animesh Garg</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:283;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2011.12267";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"A Framework for Fluid Motion Estimation using a Constraint-Based Refinement Approach. (arXiv:2011.12267v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2011.12267";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1025:"<p>The goal of this paper is to formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of the constraint, our results closely approximate the continuity equation based fluid flow. This closeness is theoretically justified through a modified augmented Lagrangian method and validated numerically. Further, along with the continuity constraint, our model can include other geometric constraints as demonstrated. The mathematical well-posedness is studied in the Hilbert space setting. Moreover, a special feature of our system is the possibility of a diagonalization by the Cauchy-Riemann operator and transforming it to a diffusion process on the curl and the divergence of the flow. Using the theory of semigroups on the decoupled system, we show that our approach preserves the spatial characteristics of the divergence and the vorticities. We perform several numerical experiments and show the results on different datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:161:" <a href="http://arxiv.org/find/cs/1/au:+Doshi_H/0/1/0/all/0/1">Hirak Doshi</a>, <a href="http://arxiv.org/find/cs/1/au:+Kiran_N/0/1/0/all/0/1">N. Uday Kiran</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:284;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2011.13730";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:128:"Multiple Faults Estimation in Dynamical Systems: Tractable Design and Performance Bounds. (arXiv:2011.13730v3 [math.OC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2011.13730";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1207:"<p>In this article, we propose a tractable nonlinear fault isolation filter along with explicit performance bounds for a class of nonlinear dynamical systems. We consider the presence of additive and multiplicative faults, occurring simultaneously and through an identical dynamical relationship, which represents a relevant case in several application domains. The proposed filter architecture combines tools from model-based approaches in the control literature and regression techniques from machine learning. To this end, we view the regression operator through a system-theoretic perspective to develop operator bounds that are then utilized to derive performance bounds for the proposed estimation filter. In the case of constant, simultaneously and identically acting additive and multiplicative faults, it can be shown that the estimation error converges to zero with an exponential rate. The performance of the proposed estimation filter in the presence of incipient faults is validated through an application on the lateral safety systems of SAE level 4 automated vehicles. The numerical results show that the theoretical bounds of this study are indeed close to the actual estimation error. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:367:" <a href="http://arxiv.org/find/math/1/au:+Ploeg_C/0/1/0/all/0/1">Chris van der Ploeg</a>, <a href="http://arxiv.org/find/math/1/au:+Alirezaei_M/0/1/0/all/0/1">Mohsen Alirezaei</a>, <a href="http://arxiv.org/find/math/1/au:+Wouw_N/0/1/0/all/0/1">Nathan van de Wouw</a>, <a href="http://arxiv.org/find/math/1/au:+Esfahani_P/0/1/0/all/0/1">Peyman Mohajerin Esfahani</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:285;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2101.02023";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Perfect domination, Roman domination and perfect Roman domination in lexicographic product graphs. (arXiv:2101.02023v3 [cs.DM] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2101.02023";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:690:"<p>The aim of this paper is to obtain closed formulas for the perfect domination number, the Roman domination number and the perfect Roman domination number of lexicographic product graphs. We show that these formulas can be obtained relatively easily for the case of the first two parameters. The picture is quite different when it concerns the perfect Roman domination number. In this case, we obtain general bounds and then we give sufficient and/or necessary conditions for the bounds to be achieved. We also discuss the case of perfect Roman graphs and we characterize the lexicographic product graphs where the perfect Roman domination number equals the Roman domination number. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:289:" <a href="http://arxiv.org/find/cs/1/au:+Martinez_A/0/1/0/all/0/1">A. Cabrera Martinez</a>, <a href="http://arxiv.org/find/cs/1/au:+Garcia_Gomez_C/0/1/0/all/0/1">C. Garcia-Gomez</a>, <a href="http://arxiv.org/find/cs/1/au:+Rodriguez_Velazquez_J/0/1/0/all/0/1">J. A. Rodriguez-Velazquez</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:286;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2102.08146";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Nominal Unification and Matching of Higher Order Expressions with Recursive Let. (arXiv:2102.08146v4 [cs.LO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2102.08146";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:795:"<p>A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in nondeterministic polynomial time. We also explore specializations like nominal letrec-matching for expressions, for DAGs, and for garbage-free expressions and determine their complexity. We also provide a nominal unification algorithm for higher-order expressions with recursive let and atom-variables, where we show that it also runs in nondeterministic polynomial time. In addition we prove that there is a guessing strategy for nominal unification with letrec and atom-variable that is a trade-off between exponential growth and non-determinism. Nominal matching with variables representing partial letrec-environments is also shown to be in NP. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:429:" <a href="http://arxiv.org/find/cs/1/au:+Schmidt_Schauss_M/0/1/0/all/0/1">Manfred Schmidt-Schauß</a>, <a href="http://arxiv.org/find/cs/1/au:+Kutsia_T/0/1/0/all/0/1">Temur Kutsia</a>, <a href="http://arxiv.org/find/cs/1/au:+Levy_J/0/1/0/all/0/1">Jordi Levy</a>, <a href="http://arxiv.org/find/cs/1/au:+Villaret_M/0/1/0/all/0/1">Mateu Villaret</a>, <a href="http://arxiv.org/find/cs/1/au:+Kutz_Y/0/1/0/all/0/1">Yunus Kutz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:287;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2102.08577";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"DO-GAN: A Double Oracle Framework for Generative Adversarial Networks. (arXiv:2102.08577v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2102.08577";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1412:"<p>In this paper, we propose a new approach to train Generative Adversarial Networks (GANs) where we deploy a double-oracle framework using the generator and discriminator oracles. GAN is essentially a two-player zero-sum game between the generator and the discriminator. Training GANs is challenging as a pure Nash equilibrium may not exist and even finding the mixed Nash equilibrium is difficult as GANs have a large-scale strategy space. In DO-GAN, we extend the double oracle framework to GANs. We first generalize the players' strategies as the trained models of generator and discriminator from the best response oracles. We then compute the meta-strategies using a linear program. For scalability of the framework where multiple generators and discriminator best responses are stored in the memory, we propose two solutions: 1) pruning the weakly-dominated players' strategies to keep the oracles from becoming intractable; 2) applying continual learning to retain the previous knowledge of the networks. We apply our framework to established GAN architectures such as vanilla GAN, Deep Convolutional GAN, Spectral Normalization GAN and Stacked GAN. Finally, we conduct experiments on MNIST, CIFAR-10 and CelebA datasets and show that DO-GAN variants have significant improvements in both subjective qualitative evaluation and quantitative metrics, compared with their respective GAN architectures. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:479:" <a href="http://arxiv.org/find/cs/1/au:+Aung_A/0/1/0/all/0/1">Aye Phyu Phyu Aung</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_X/0/1/0/all/0/1">Xinrun Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_R/0/1/0/all/0/1">Runsheng Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+An_B/0/1/0/all/0/1">Bo An</a>, <a href="http://arxiv.org/find/cs/1/au:+Jayavelu_S/0/1/0/all/0/1">Senthilnath Jayavelu</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1">Xiaoli Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:288;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2102.13086";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:68:"Simple multi-dataset detection. (arXiv:2102.13086v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2102.13086";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:943:"<p>How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Experiments show our learned taxonomy outperforms a expert-designed taxonomy in all datasets. Our multi-dataset detector performs as well as dataset-specific models on each training domain, and can generalize to new unseen dataset without fine-tuning on them. Code is available at https://github.com/xingyizhou/UniDet. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:264:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_X/0/1/0/all/0/1">Xingyi Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Koltun_V/0/1/0/all/0/1">Vladlen Koltun</a>, <a href="http://arxiv.org/find/cs/1/au:+Krahenbuhl_P/0/1/0/all/0/1">Philipp Krähenbühl</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:289;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2103.01648";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:120:"Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior. (arXiv:2103.01648v4 [stat.ML] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2103.01648";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1653:"<p>In this work we address the problem of solving ill-posed inverse problems in imaging where the prior is a variational autoencoder (VAE). Specifically we consider the decoupled case where the prior is trained once and can be reused for many different log-concave degradation models without retraining. Whereas previous MAP-based approaches to this problem lead to highly non-convex optimization algorithms, our approach computes the joint (space-latent) MAP that naturally leads to alternate optimization algorithms and to the use of a stochastic encoder to accelerate computations. The resulting technique (JPMAP) performs Joint Posterior Maximization using an Autoencoding Prior. We show theoretical and experimental evidence that the proposed objective function is quite close to bi-convex. Indeed it satisfies a weak bi-convexity property which is sufficient to guarantee that our optimization scheme converges to a stationary point. We also highlight the importance of correctly training the VAE using a denoising criterion, in order to ensure that the encoder generalizes well to out-of-distribution images, without affecting the quality of the generative model. This simple modification is key to providing robustness to the whole procedure. Finally we show how our joint MAP methodology relates to more common MAP approaches, and we propose a continuation scheme that makes use of our JPMAP algorithm to provide more robust MAP estimates. Experimental results also show the higher quality of the solutions obtained by our JPMAP approach with respect to other non-convex MAP approaches which more often get stuck in spurious local optima. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:264:" <a href="http://arxiv.org/find/stat/1/au:+Gonzalez_M/0/1/0/all/0/1">Mario González</a>, <a href="http://arxiv.org/find/stat/1/au:+Almansa_A/0/1/0/all/0/1">Andrés Almansa</a>, <a href="http://arxiv.org/find/stat/1/au:+Tan_P/0/1/0/all/0/1">Pauline Tan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:290;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2103.01997";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Material Measurement Units for a Circular Economy: Foundations through a Review. (arXiv:2103.01997v3 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2103.01997";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:726:"<p>Long-term availability of minerals and industrial materials is a necessary condition for sustainable development as they are the constituents of any manufacturing product. To enhance the efficiency of material management, we define a computer-vision-enabled material measurement system and provide a review of works relevant to its development with particular emphasis on the foundations. A network of such systems for wide-area material stock monitoring is also covered. Finally, challenges and future research directions are discussed. As the first article bridging industrial ecology and advanced computer vision, this review is intended to support both research communities towards more sustainable manufacturing. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:253:" <a href="http://arxiv.org/find/cs/1/au:+Zocco_F/0/1/0/all/0/1">Federico Zocco</a>, <a href="http://arxiv.org/find/cs/1/au:+McLoone_S/0/1/0/all/0/1">Seán McLoone</a>, <a href="http://arxiv.org/find/cs/1/au:+Smyth_B/0/1/0/all/0/1">Beatrice Smyth</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:291;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2103.07615";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:134:"An Efficient Multitask Neural Network for Face Alignment, Head Pose Estimation and Face Tracking. (arXiv:2103.07615v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2103.07615";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1683:"<p>While Convolutional Neural Networks (CNNs) have significantly boosted the performance of face related algorithms, maintaining accuracy and efficiency simultaneously in practical use remains challenging. The state-of-the-art methods employ deeper networks for better performance, which makes it less practical for mobile applications because of more parameters and higher computational complexity. Therefore, we propose an efficient multitask neural network, Alignment & Tracking & Pose Network (ATPN) for face alignment, face tracking and head pose estimation. Specifically, to achieve better performance with fewer layers for face alignment, we introduce a shortcut connection between shallow-layer and deep-layer features. We find the shallow-layer features are highly correspond to facial boundaries that can provide the structural information of face and it is crucial for face alignment. Moreover, we generate a cheap heatmap based on the face alignment result and fuse it with features to improve the performance of the other two tasks. Based on the heatmap, the network can utilize both geometric information of landmarks and appearance information for head pose estimation. The heatmap also provides attention clues for face tracking. The face tracking task also saves us the face detection procedure for each frame, which also significantly boost the real-time capability for video-based tasks. We experimentally validate ATPN on four benchmark datasets, WFLW, 300VW, WIDER Face and 300W-LP. The experimental results demonstrate that it achieves better performance with much less parameters and lower computational complexity compared to other light models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:384:" <a href="http://arxiv.org/find/cs/1/au:+Xia_J/0/1/0/all/0/1">Jiahao Xia</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_H/0/1/0/all/0/1">Haimin Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wen_S/0/1/0/all/0/1">Shiping Wen</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_S/0/1/0/all/0/1">Shuo Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_M/0/1/0/all/0/1">Min Xu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:292;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2104.00462";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"SCALoss: Side and Corner Aligned Loss for Bounding Box Regression. (arXiv:2104.00462v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2104.00462";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1280:"<p>Bounding box regression is an important component in object detection. Recent work achieves promising performance by optimizing the Intersection over Union~(IoU). However, IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes, and the model could easily ignore these simple cases. In this paper, we propose Side Overlap~(SO) loss by maximizing the side overlap of two bounding boxes, which puts more penalty for low overlapping bounding box cases. Besides, to speed up the convergence, the Corner Distance~(CD) is added into the objective function. Combining the Side Overlap and Corner Distance, we get a new regression objective function, \textit{Side and Corner Align Loss~(SCALoss)}. The SCALoss is well-correlated with IoU loss, which also benefits the evaluation metric but produces more penalty for low-overlapping cases. It can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed. Experiments on COCO, PASCAL VOC, and LVIS benchmarks show that SCALoss can bring consistent improvement and outperform $\ell_n$ loss and IoU based loss with popular object detectors such as YOLOV3, SSD, Faster-RCNN. Code is available at: \url{https://github.com/Turoad/SCALoss}. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:379:" <a href="http://arxiv.org/find/cs/1/au:+Zheng_T/0/1/0/all/0/1">Tu Zheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_S/0/1/0/all/0/1">Shuai Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Z/0/1/0/all/0/1">Zili Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Cai_D/0/1/0/all/0/1">Deng Cai</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:293;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2104.08559";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:114:"Abusing Cache Line Dirty States to Leak Information in Commercial Processors. (arXiv:2104.08559v2 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2104.08559";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1917:"<p>Caches have been used to construct various types of covert and side channels to leak information. Most existing cache channels exploit the timing difference between cache hits and cache misses. However, we introduce a new and broader classification of cache covert channel attacks: Hit+Miss, Hit+Hit, and Miss+Miss. We highlight that cache misses for cache lines in different states may have more significant time differences, and these can be used as timing channels. Based on this classification, we propose a new stable and stealthy Miss+Miss cache channel. Write-back caches are widely deployed in modern processors. This paper presents in detail a way in which replacement latency differences can be used to construct timing-based channels (called WB channels) to leak information in a write-back cache. Any modification to a cache line by a sender will set it to the dirty state, and the receiver can observe this through measuring the latency of replacing this cache set. We also demonstrate how senders could exploit a different number of dirty cache lines in a cache set to improve transmission bandwidth with symbols encoding multiple bits. The peak transmission bandwidths of the WB channels in commercial systems can vary between 1300 and 4400~kbps per cache set in a hyper-threaded setting without shared memory between the sender and the receiver. In contrast to most existing cache channels, which always target specific memory addresses, the new WB channels focus on the cache set and cache line states, making it difficult for the channel to be disturbed by other processes on the core, and they can still work in a cache using a random replacement policy. We also analyzed the stealthiness of WB channels from the perspective of the number of cache loads and cache miss rates. We discuss and evaluate possible defenses. The paper finishes by discussing various forms of side-channel attack. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:229:" <a href="http://arxiv.org/find/cs/1/au:+Cui_Y/0/1/0/all/0/1">Yujie Cui</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_C/0/1/0/all/0/1">Chun Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Cheng_X/0/1/0/all/0/1">Xu Cheng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:294;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2104.13137";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:143:"A non-singular boundary element method for interactions between acoustical field sources and structures. (arXiv:2104.13137v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2104.13137";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:653:"<p>Localized point sources (monopoles) in an acoustical domain are implemented to a three dimensional non-singular Helmholtz boundary element method in the frequency domain. It allows for the straightforward use of higher order surface elements on the boundaries of the problem. It will been shown that the effect of the monopole sources ends up on the right hand side of the resulting matrix system. Some carefully selected examples are studied, such as point sources near and within a concentric spherical core-shell scatterer (with theoretical verification), near a curved focusing surface and near a multi-scale and multi-domain acoustic lens. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:77:" <a href="http://arxiv.org/find/math/1/au:+Sun_Q/0/1/0/all/0/1">Qiang Sun</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:295;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2104.14349";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:98:"Hand Gesture Recognition Based on a Nonconvex Regularization. (arXiv:2104.14349v3 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2104.14349";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:749:"<p>Recognition of hand gestures is one of the most fundamental tasks in human-robot interaction. Sparse representation based methods have been widely used due to their efficiency and low demands on the training data. Recently, nonconvex regularization techniques including the $\ell_{1-2}$ regularization have been proposed in the image processing community to promote sparsity while achieving efficient performance. In this paper, we propose a vision-based hand gesture recognition model based on the $\ell_{1-2}$ regularization, which is solved by the alternating direction method of multipliers (ADMM). Numerical experiments on binary and gray-scale data sets have demonstrated the effectiveness of this method in identifying hand gestures. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:233:" <a href="http://arxiv.org/find/cs/1/au:+Qin_J/0/1/0/all/0/1">Jing Qin</a>, <a href="http://arxiv.org/find/cs/1/au:+Ashley_J/0/1/0/all/0/1">Joshua Ashley</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_B/0/1/0/all/0/1">Biyun Xie</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:296;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2104.14750";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:90:"A Refined Inertial DC Algorithm for DC Programming. (arXiv:2104.14750v2 [math.OC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2104.14750";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1102:"<p>In this paper we consider the difference-of-convex (DC) programming problems, whose objective function is the difference of two convex functions. The classical DC Algorithm (DCA) is well-known for solving this kind of problems, which generally returns a critical point. Recently, an inertial DC algorithm (InDCA) equipped with heavy-ball inertial-force procedure was proposed in de Oliveira et al. (Set-Valued and Variational Analysis 27(4):895--919, 2019), which potentially helps to improve both the convergence speed and the solution quality. Based on InDCA, we propose a refined inertial DC algorithm (RInDCA) equipped with enlarged inertial step-size compared with InDCA. Empirically, larger step-size accelerates the convergence. We demonstrate the subsequential convergence of our refined version to a critical point. In addition, by assuming the Kurdyka-{\L}ojasiewicz (KL) property of the objective function, we establish the sequential convergence of RInDCA. Numerical simulations on checking copositivity of matrices and image denoising problem show the benefit of larger step-size. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:155:" <a href="http://arxiv.org/find/math/1/au:+You_Y/0/1/0/all/0/1">Yu You</a>, <a href="http://arxiv.org/find/math/1/au:+Niu_Y/0/1/0/all/0/1">Yi-Shuai Niu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:297;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2105.13634";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:128:"Saudi Parents' Privacy Concerns about Their Children's Smart Device Applications. (arXiv:2105.13634v2 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2105.13634";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1722:"<p>In this paper, we investigate Saudi parents' privacy concerns regarding their children's smart device applications (apps). To this end, we conducted a survey and analysed 119 responses. Our results show that Saudi parents expressed a high level of concern regarding their children's privacy when using smart device apps. However, they expressed higher concerns about apps' content than privacy issues such as apps' requests to access sensitive data. Furthermore, parents' concerns are not in line with most of the children's installed apps, which contain apps inappropriate for their age, require parental guidance, and request access to sensitive data such as location. We also discuss several aspects of Saudi parents' practices and concerns compared to those reported by Western (mainly from the UK) and Chinese parents in previous reports. We found interesting patterns and established new relationships. For example, Saudi and Western parents show higher levels of privacy concerns than Chinese parents. Finally, we tested 14 privacy practices and concerns against high versus low socioeconomic classes (parents' education, technical background, and income) to find whether there are significant differences between high and low classes (we denote these differences by "digital divide"). Out of 42 tests (14 properties x 3 classes) we found significant differences between high and low classes in 7 tests only. While this is a positive trend overall, it is important to work on bridging these gaps. The results of this paper provide key findings to identify areas of improvement and recommendations, especially for Saudis, which can be used by parents, developers, researchers, regulators, and policy makers. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:176:" <a href="http://arxiv.org/find/cs/1/au:+Alashwali_E/0/1/0/all/0/1">Eman Alashwali</a>, <a href="http://arxiv.org/find/cs/1/au:+Alashwali_F/0/1/0/all/0/1">Fatimah Alashwali</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:298;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2105.13880";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"Knowledge Inheritance for Pre-trained Language Models. (arXiv:2105.13880v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2105.13880";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1093:"<p>Recent explorations of large-scale pre-trained language models (PLMs) have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, it requires tremendous computational resources to train a large-scale PLM, which may be practically unaffordable. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring that many well-trained PLMs are available. To this end, we explore the question how could existing PLMs benefit training large-scale PLMs in future. Specifically, we introduce a pre-training framework named "knowledge inheritance" (KI) and explore how could knowledge distillation serve as auxiliary supervision during pre-training to efficiently learn larger PLMs. Experimental results demonstrate the superiority of KI in training efficiency. We also conduct empirical analyses to explore the effects of teacher PLMs' pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI could be applied to domain adaptation and knowledge transfer. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:843:" <a href="http://arxiv.org/find/cs/1/au:+Qin_Y/0/1/0/all/0/1">Yujia Qin</a>, <a href="http://arxiv.org/find/cs/1/au:+Lin_Y/0/1/0/all/0/1">Yankai Lin</a>, <a href="http://arxiv.org/find/cs/1/au:+Yi_J/0/1/0/all/0/1">Jing Yi</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Jiajie Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_X/0/1/0/all/0/1">Xu Han</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Zhengyan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Su_Y/0/1/0/all/0/1">Yusheng Su</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Z/0/1/0/all/0/1">Zhiyuan Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_P/0/1/0/all/0/1">Peng Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_M/0/1/0/all/0/1">Maosong Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhou_J/0/1/0/all/0/1">Jie Zhou</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:299;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2105.14435";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:82:"Convergence of Datalog over (Pre-) Semirings. (arXiv:2105.14435v3 [cs.DB] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2105.14435";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:853:"<p>Recursive queries have been traditionally studied in the framework of datalog, a language that restricts recursion to monotone queries over sets, which is guaranteed to converge in polynomial time in the size of the input. But modern big data systems require recursive computations beyond the Boolean space. In this paper we study the convergence of datalog when it is interpreted over an arbitrary semiring. We consider an ordered semiring, define the semantics of a datalog program as a least fixpoint in this semiring, and study the number of steps required to reach that fixpoint, if ever. We identify algebraic properties of the semiring that correspond to certain convergence properties of datalog programs. Finally, we describe a class of ordered semirings on which one can use the semi-naive evaluation algorithm on any datalog program. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:412:" <a href="http://arxiv.org/find/cs/1/au:+Khamis_M/0/1/0/all/0/1">Mahmoud Abo Khamis</a>, <a href="http://arxiv.org/find/cs/1/au:+Ngo_H/0/1/0/all/0/1">Hung Q. Ngo</a>, <a href="http://arxiv.org/find/cs/1/au:+Pichler_R/0/1/0/all/0/1">Reinhard Pichler</a>, <a href="http://arxiv.org/find/cs/1/au:+Suciu_D/0/1/0/all/0/1">Dan Suciu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_Y/0/1/0/all/0/1">Yisu Remy Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:300;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2106.00186";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:95:"Towards Light-weight and Real-time Line Segment Detection. (arXiv:2106.00186v3 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2106.00186";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1403:"<p>Previous deep learning-based line segment detection (LSD) suffers from the immense model size and high computational cost for line prediction. This constrains them from real-time inference on computationally restricted environments. In this paper, we propose a real-time and light-weight line segment detector for resource-constrained environments named Mobile LSD (M-LSD). We design an extremely efficient LSD architecture by minimizing the backbone network and removing the typical multi-module process for line prediction found in previous methods. To maintain competitive performance with a light-weight network, we present novel training schemes: Segments of Line segment (SoL) augmentation, matching and geometric loss. SoL augmentation splits a line segment into multiple subparts, which are used to provide auxiliary line data during the training process. Moreover, the matching and geometric loss allow a model to capture additional geometric cues. Compared with TP-LSD-Lite, previously the best real-time LSD method, our model (M-LSD-tiny) achieves competitive performance with 2.5% of model size and an increase of 130.5% in inference speed on GPU. Furthermore, our model runs at 56.8 FPS and 48.6 FPS on the latest Android and iPhone mobile devices, respectively. To the best of our knowledge, this is the first real-time deep LSD available on mobile devices. Our code is available. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:468:" <a href="http://arxiv.org/find/cs/1/au:+Gu_G/0/1/0/all/0/1">Geonmo Gu</a>, <a href="http://arxiv.org/find/cs/1/au:+Ko_B/0/1/0/all/0/1">Byungsoo Ko</a>, <a href="http://arxiv.org/find/cs/1/au:+Go_S/0/1/0/all/0/1">SeoungHyun Go</a>, <a href="http://arxiv.org/find/cs/1/au:+Lee_S/0/1/0/all/0/1">Sung-Hyun Lee</a>, <a href="http://arxiv.org/find/cs/1/au:+Lee_J/0/1/0/all/0/1">Jingeun Lee</a>, <a href="http://arxiv.org/find/cs/1/au:+Shin_M/0/1/0/all/0/1">Minchul Shin</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:301;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2106.00903";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:138:"Rejuvenating Low-Frequency Words: Making the Most of Parallel Data in Non-Autoregressive Translation. (arXiv:2106.00903v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2106.00903";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1338:"<p>Knowledge distillation (KD) is commonly used to construct synthetic data for training non-autoregressive translation (NAT) models. However, there exists a discrepancy on low-frequency words between the distilled and the original data, leading to more errors on predicting low-frequency words. To alleviate the problem, we directly expose the raw data into NAT by leveraging pretraining. By analyzing directed alignments, we found that KD makes low-frequency source words aligned with targets more deterministically but fails to align sufficient low-frequency words from target to source. Accordingly, we propose reverse KD to rejuvenate more alignments for low-frequency target words. To make the most of authentic and synthetic data, we combine these complementary approaches as a new training strategy for further boosting NAT performance. We conduct experiments on five translation benchmarks over two advanced architectures. Results demonstrate that the proposed approach can significantly and universally improve translation quality by reducing translation errors on low-frequency words. Encouragingly, our approach achieves 28.2 and 33.9 BLEU points on the WMT14 English-German and WMT16 Romanian-English datasets, respectively. Our code, data, and trained models are available at \url{https://github.com/alphadl/RLFW-NAT}. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:469:" <a href="http://arxiv.org/find/cs/1/au:+Ding_L/0/1/0/all/0/1">Liang Ding</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_L/0/1/0/all/0/1">Longyue Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xuebo Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wong_D/0/1/0/all/0/1">Derek F. Wong</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_D/0/1/0/all/0/1">Dacheng Tao</a>, <a href="http://arxiv.org/find/cs/1/au:+Tu_Z/0/1/0/all/0/1">Zhaopeng Tu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:302;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2106.07243";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:130:"Compressed Gradient Tracking for Decentralized Optimization Over General Directed Networks. (arXiv:2106.07243v3 [math.OC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2106.07243";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:845:"<p>In this paper, we propose two communication efficient decentralized optimization algorithms over a general directed multi-agent network. The first algorithm, termed Compressed Push-Pull (CPP), combines the gradient tracking Push-Pull method with communication compression. We show that CPP is applicable to a general class of unbiased compression operators and achieves linear convergence rate for strongly convex and smooth objective functions. The second algorithm is a broadcast-like version of CPP (B-CPP), and it also achieves linear convergence rate under the same conditions on the objective functions. B-CPP can be applied in an asynchronous broadcast setting and further reduce communication costs compared to CPP. Numerical experiments complement the theoretical analysis and confirm the effectiveness of the proposed methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:309:" <a href="http://arxiv.org/find/math/1/au:+Song_Z/0/1/0/all/0/1">Zhuoqing Song</a>, <a href="http://arxiv.org/find/math/1/au:+Shi_L/0/1/0/all/0/1">Lei Shi</a>, <a href="http://arxiv.org/find/math/1/au:+Pu_S/0/1/0/all/0/1">Shi Pu</a>, <a href="http://arxiv.org/find/math/1/au:+Yan_M/0/1/0/all/0/1">Ming Yan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:303;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2106.13170";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"A Characteristic Mapping Method for Tracer Transport on the Sphere. (arXiv:2106.13170v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2106.13170";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:991:"<p>A semi-Lagrangian Characteristic Mapping method for the solution of the tracer transport equations on the sphere is presented. The method solves for the solution operator of the equations by approximating the inverse of the diffeomorphism generated by a given velocity field. The evolution of any tracer and mass density can then be computed via pullback with this map. We present a novel spatial discretization of the manifold-valued map using a projection-based approach with spherical spline interpolation. The numerical scheme yields $C^1$ continuity for the map and global second-order accuracy for the solution of the tracer transport equations. Error estimates are provided and supported by convergence tests involving solid body rotation, moving vortices, deformational, and compressible flows. Additionally, we illustrate some unique features of computing the solution operator using a numerical mixing test and the transport of a fractal set in a complex flow environment. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:172:" <a href="http://arxiv.org/find/math/1/au:+Taylor_S/0/1/0/all/0/1">Seth Taylor</a>, <a href="http://arxiv.org/find/math/1/au:+Nave_J/0/1/0/all/0/1">Jean-Christophe Nave</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:304;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2106.14104";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Can An Image Classifier Suffice For Action Recognition?. (arXiv:2106.14104v3 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2106.14104";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1000:"<p>We explore a new perspective on video understanding by casting the video recognition problem as an image recognition task. Our approach rearranges input video frames into super images, which allow for training an image classifier directly to fulfill the task of action recognition, in exactly the same way as image classification. With such a simple idea, we show that transformer-based image classifiers alone can suffice for action recognition. In particular, our approach demonstrates strong and promising performance against SOTA methods on several public datasets including Kinetics400, Moments In Time, Something-Something V2 (SSV2), Jester and Diving48. We also experiment with the prevalent ResNet image classifiers in computer vision to further validate our idea. The results on both Kinetics400 and SSV2 are comparable to some of the best-performed CNN approaches based on spatio-temporal modeling. Our source codes and models are available at https://github.com/IBM/sifar-pytorch. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:314:" <a href="http://arxiv.org/find/cs/1/au:+Fan_Q/0/1/0/all/0/1">Quanfu Fan</a>, <a href="http://arxiv.org/find/cs/1/au:+Chun-Fu/0/1/0/all/0/1">Chun-Fu</a> (Richard) <a href="http://arxiv.org/find/cs/1/au:+Chen/0/1/0/all/0/1">Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Panda_R/0/1/0/all/0/1">Rameswar Panda</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:305;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.02288";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"Performance Analysis of Regularized Convex Relaxation for Complex-Valued Data Detection. (arXiv:2107.02288v6 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.02288";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:915:"<p>In this work, we study complex-valued data detection performance in massive multiple-input multiple-output (MIMO) systems. We focus on the problem of recovering an $n$-dimensional signal whose entries are drawn from an arbitrary constellation $\mathcal{K} \subset \mathbb{C}$ from $m$ noisy linear measurements, with an independent and identically distributed (i.i.d.) complex Gaussian channel. Since the optimal maximum likelihood (ML) detector is computationally prohibitive for large dimensions, many convex relaxation heuristic methods have been proposed to solve the detection problem. In this paper, we consider a regularized version of this convex relaxation that we call the regularized convex relaxation (RCR) detector and sharply derive asymptotic expressions for its mean square error and symbol error probability. Monte-Carlo simulations are provided to validate the derived analytical results. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:171:" <a href="http://arxiv.org/find/cs/1/au:+Alrashdi_A/0/1/0/all/0/1">Ayed M. Alrashdi</a>, <a href="http://arxiv.org/find/cs/1/au:+Sifaou_H/0/1/0/all/0/1">Houssem Sifaou</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:306;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.04438";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:128:"A Comparison of Contextual and Non-Contextual Preference Ranking for Set Addition Problems. (arXiv:2107.04438v2 [cs.AI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.04438";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:825:"<p>In this paper, we study the problem of evaluating the addition of elements to a set. This problem is difficult, because it can, in the general case, not be reduced to unconditional preferences between the choices. Therefore, we model preferences based on the context of the decision. We discuss and compare two different Siamese network architectures for this task: a twin network that compares the two sets resulting after the addition, and a triplet network that models the contribution of each candidate to the existing set. We evaluate the two settings on a real-world task; learning human card preferences for deck building in the collectible card game Magic: The Gathering. We show that the triplet approach achieves a better result than the twin network and that both outperform previous results on this task. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:266:" <a href="http://arxiv.org/find/cs/1/au:+Bertram_T/0/1/0/all/0/1">Timo Bertram</a>, <a href="http://arxiv.org/find/cs/1/au:+Furnkranz_J/0/1/0/all/0/1">Johannes Fürnkranz</a>, <a href="http://arxiv.org/find/cs/1/au:+Muller_M/0/1/0/all/0/1">Martin Müller</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:307;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.04642";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"Escaping the Impossibility of Fairness: From Formal to Substantive Algorithmic Fairness. (arXiv:2107.04642v6 [cs.CY] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.04642";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1778:"<p>As governments embrace algorithms, the burgeoning field of algorithmic fairness provides an influential methodology for promoting equality-enhancing reforms. However, even algorithms that satisfy mathematical fairness standards can exacerbate oppression, causing critics to call for the field to shift its focus from "fairness" to "justice." Yet any efforts to achieve algorithmic justice in practice are constrained by a fundamental technical limitation: the "impossibility of fairness" (an incompatibility between mathematical definitions of fairness). The impossibility of fairness thus raises a central question about algorithmic fairness: How can computer scientists support equitable policy reforms with algorithms? In this article, I argue that promoting justice with algorithms requires reforming the methodology of algorithmic fairness. First, I diagnose why the current methodology for algorithmic fairness--which I call "formal algorithmic fairness"--is flawed. I demonstrate that the problems of algorithmic fairness--including the impossibility of fairness--result from the methodology of the field, which restricts analysis to isolated decision-making procedures. Second, I draw on theories of substantive equality from law and philosophy to propose an alternative methodology: "substantive algorithmic fairness." Because substantive algorithmic fairness takes a more expansive scope to fairness, it enables an escape from the impossibility of fairness and provides a rigorous guide for alleviating injustice with algorithms. In sum, substantive algorithmic fairness presents a new direction for algorithmic fairness: away from formal mathematical models of "fairness" and toward substantive evaluations of how algorithms can (and cannot) promote justice. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:77:" <a href="http://arxiv.org/find/cs/1/au:+Green_B/0/1/0/all/0/1">Ben Green</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:308;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.05131";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"A dual approach for dynamic pricing in multi-demand markets. (arXiv:2107.05131v3 [cs.GT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.05131";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1207:"<p>Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms. In contrast to static models, the dynamic setting allows to update the prices between buyer-arrivals based on the remaining sets of items and buyers, and so it is capable of maximizing social welfare without the need for a central coordinator. In this paper, we study the existence of optimal dynamic pricing schemes in combinatorial markets. In particular, we concentrate on multi-demand valuations, a natural extension of unit-demand valuations. The proposed approach is based on computing an optimal dual solution of the maximum social welfare problem with distinguished structural properties. </p> <p>Our contribution is twofold. By relying on an optimal dual solution, we show the existence of optimal dynamic prices in unit-demand markets and in multi-demand markets up to three buyers, thus giving new interpretations of results of Cohen-Addad et al. and Berger et al., respectively. Furthermore, we provide an optimal dynamic pricing scheme for bi-demand valuations with an arbitrary number of buyers. In all cases, our proofs also provide efficient algorithms for determining the optimal dynamic prices. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:288:" <a href="http://arxiv.org/find/cs/1/au:+Berczi_K/0/1/0/all/0/1">Kristóf Bérczi</a>, <a href="http://arxiv.org/find/cs/1/au:+Berczi_Kovacs_E/0/1/0/all/0/1">Erika R. Bérczi-Kovács</a>, <a href="http://arxiv.org/find/cs/1/au:+Szogi_E/0/1/0/all/0/1">Evelin Szögi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:309;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.05247";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:118:"INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. (arXiv:2107.05247v2 [cs.IR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.05247";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1635:"<p>Collaborative filtering is one of the most common scenarios and popular research topics in recommender systems. Among existing methods, latent factor models, i.e., learning a specific embedding for each user/item by reconstructing the observed interaction matrix, have shown excellent performances. However, such user-specific and item-specific embeddings are intrinsically transductive, making it difficult to deal with new users and new items unseen during training. Besides, the number of model parameters heavily depends on the number of all users and items, restricting its scalability to real-world applications. To solve the above challenges, in this paper, we propose a novel model-agnostic and scalable Inductive Embedding Module for collaborative filtering, namely INMO. INMO generates the inductive embeddings for users (items) by characterizing their interactions with some template items (template users), instead of employing an embedding lookup table. Under the theoretical analysis, we further propose an effective indicator for the selection of template users/items. Our proposed INMO can be attached to existing latent factor models as a pre-module, inheriting the expressiveness of backbone models, while bringing the inductive ability and reducing model parameters. We validate the generality of INMO by attaching it to both Matrix Factorization (MF) and LightGCN, which are two representative latent factor models for collaborative filtering. Extensive experiments on three public benchmarks demonstrate the effectiveness and efficiency of INMO in both transductive and inductive recommendation scenarios. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:385:" <a href="http://arxiv.org/find/cs/1/au:+Wu_Y/0/1/0/all/0/1">Yunfan Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_Q/0/1/0/all/0/1">Qi Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Shen_H/0/1/0/all/0/1">Huawei Shen</a>, <a href="http://arxiv.org/find/cs/1/au:+Tao_S/0/1/0/all/0/1">Shuchang Tao</a>, <a href="http://arxiv.org/find/cs/1/au:+Cheng_X/0/1/0/all/0/1">Xueqi Cheng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:310;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2107.06433";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:138:"A New Parallel Algorithm for Sinkhorn Word-Movers Distance and Its Performance on PIUMA and Xeon CPU. (arXiv:2107.06433v3 [cs.DC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2107.06433";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1772:"<p>The Word Movers Distance (WMD) measures the semantic dissimilarity between two text documents by computing the cost of optimally moving all words of a source/query document to the most similar words of a target document. Computing WMD between two documents is costly because it requires solving an $O(V^3log(V))$ optimization problem where $V$ is the number of unique words in the document. Fortunately, WMD can be framed as an Earth Mover's Distance (EMD) for which the algorithmic complexity can be reduced to $O(V^2)$ by adding an entropy penalty to the optimization problem and solving it using the Sinkhorn-Knopp algorithm. Additionally, the computation can be made highly parallel by adopting a batching approach, i.e., computing the WMD of a single query document against multiple target documents at once. </p> <p>Sinkhorn WMD is a key kernel used in many ML/NLP applications. and usually gets implemented in Python. However, a straightforward Python implementation may leave significant performance on the table even though it may internally call optimized C++ BLAS routines. We present a new sparse {P}arallel {A}lgorithm for {S}inkhorn-Knopp {W}ord-movers {D}istance to compute the semantic distance of one document to many other documents by adopting the $O(V^2)$ EMD algorithm. We algorithmically transform $O(V^2)$ dense compute-heavy EMD version into an equivalent sparse one using new fused SDDMM-SpMM (sparse selection of dense-dense matrix-, sparse-dense matrix-multiplication) kernels. We implemented and optimized this algorithm for two very different architectures -- the new Intel Programmable Integrated Unified Memory Architecture (PIUMA) and Intel Xeon CPUs. We show that we were able to reach close to peak performance on both platforms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/cs/1/au:+Tithi_J/0/1/0/all/0/1">Jesmin Jahan Tithi</a>, <a href="http://arxiv.org/find/cs/1/au:+Petrini_F/0/1/0/all/0/1">Fabrizio Petrini</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:311;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2108.00941";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"A Survey of Human-in-the-loop for Machine Learning. (arXiv:2108.00941v3 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2108.00941";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1170:"<p>Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field; along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:464:" <a href="http://arxiv.org/find/cs/1/au:+Wu_X/0/1/0/all/0/1">Xingjiao Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiao_L/0/1/0/all/0/1">Luwei Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_Y/0/1/0/all/0/1">Yixuan Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Junhang Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_T/0/1/0/all/0/1">Tianlong Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+He_L/0/1/0/all/0/1">Liang He</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:312;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2108.05761";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:153:"Analyzing hierarchical multi-view MRI data with StaPLR: An application to Alzheimer's disease classification. (arXiv:2108.05761v3 [stat.ME] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2108.05761";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:987:"<p>Multi-view data refers to a setting where features are divided into feature sets, for example because they correspond to different sources. Stacked penalized logistic regression (StaPLR) is a recently introduced method that can be used for classification and automatically selecting the views that are most important for prediction. We introduce an extension of this method to a setting where the data has a hierarchical multi-view structure. We also introduce a new view importance measure for StaPLR, which allows us to compare the importance of views at any level of the hierarchy. We apply our extended StaPLR algorithm to Alzheimer's disease classification where different MRI measures have been calculated from three scan types: structural MRI, diffusion-weighted MRI, and resting-state fMRI. StaPLR can identify which scan types and which derived MRI measures are most important for classification, and it outperforms elastic net regression in classification performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:594:" <a href="http://arxiv.org/find/stat/1/au:+Loon_W/0/1/0/all/0/1">Wouter van Loon</a>, <a href="http://arxiv.org/find/stat/1/au:+Vos_F/0/1/0/all/0/1">Frank de Vos</a>, <a href="http://arxiv.org/find/stat/1/au:+Fokkema_M/0/1/0/all/0/1">Marjolein Fokkema</a>, <a href="http://arxiv.org/find/stat/1/au:+Szabo_B/0/1/0/all/0/1">Botond Szabo</a>, <a href="http://arxiv.org/find/stat/1/au:+Koini_M/0/1/0/all/0/1">Marisa Koini</a>, <a href="http://arxiv.org/find/stat/1/au:+Schmidt_R/0/1/0/all/0/1">Reinhold Schmidt</a>, <a href="http://arxiv.org/find/stat/1/au:+Rooij_M/0/1/0/all/0/1">Mark de Rooij</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:313;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2108.09498";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:173:"Active User Detection and Channel Estimation for Spatial-based Random Access in Crowded Massive MIMO Systems via Blind Super-resolution. (arXiv:2108.09498v2 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2108.09498";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1764:"<p>This work presents a novel framework for random access in crowded scenarios of multiple-input multiple-output(MIMO) systems. A multi-antenna base station (BS) and multiple single-antenna users are considered in these systems. A huge portion of the system resources is dedicated as orthogonal pilots for accurate channel estimation which imposes a huge training overhead. This overhead can be highly mitigated by exploiting intrinsic angular domain sparsity of massive MIMO channels and the sporadic traffic of users, i.e., few number of users are active to sent or receive data in each coherence interval. In fact, the angles of arrivals (AoAs) coming from active users are continuous parameters and can take any arbitrary values. Besides, the AoAs corresponding to each active user are alongside each other forming a specific cluster. This work revolves around exploiting these features. Specifically, a blind clustering-based algorithm is proposed that not only recovers the transmitted data by users in grant free random access and primary pilots in random access blocks of coherent transmission, but also provides accurate channel estimation. Our approach is based on transforming the unknown variables into a higher dimensional space with matrix variables. An off-grid atomic norm minimization is then proposed to obtain the unknown matrix from only a few observed arrays at the BS. Then, a clustering-based approach is employed to identify which AoAs correspond to which active users. After identifying active users and their AoAs, an alternating-based approach is performed to obtain the channels and data or primary pilots of active users. Simulation results demonstrate the effectiveness of our approach in AoA detection as well as data recovery. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:255:" <a href="http://arxiv.org/find/cs/1/au:+Afshar_A/0/1/0/all/0/1">Abolghasem Afshar</a>, <a href="http://arxiv.org/find/cs/1/au:+Vakili_V/0/1/0/all/0/1">Vahid Tabataba Vakili</a>, <a href="http://arxiv.org/find/cs/1/au:+Daei_S/0/1/0/all/0/1">Sajad Daei</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:314;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.04517";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Prediction and Prevention of Pandemics via Graphical Model Inference and Convex Programming. (arXiv:2109.04517v2 [cs.SI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.04517";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1793:"<p>Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two inter-related public health challenges. (1) Inference Challenge: assuming that there are $N$ census blocks (nodes) in the city, and given an initial infection at any set of nodes, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge: What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pair-wise, binary) type, where each node represents a census track and each edge factor represents the strength of the pairwise interaction between a pair of nodes. We show that almost all attractive Ising Models on dense graphs result in either of the two modes for the most probable state: either all nodes which were not infected initially became infected, or all the initially uninfected nodes remain uninfected. This bi-modal solution of the Inference Challenge allows us to re-state the Prevention Challenge as the following tractable convex programming: for the bare Ising Model with pair-wise and bias factors representing the system without prevention measures, such that the MAP state is fully infected for at least one of the initial infection patterns, find the closest, in $l_1$ norm, set of factors resulting in all the MAP states of the Ising model, with the optimal prevention measures applied, to become safe. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:455:" <a href="http://arxiv.org/find/cs/1/au:+Krechetov_M/0/1/0/all/0/1">Mikhail Krechetov</a>, <a href="http://arxiv.org/find/cs/1/au:+Sikaroudi_A/0/1/0/all/0/1">Amir Mohammad Esmaieeli Sikaroudi</a>, <a href="http://arxiv.org/find/cs/1/au:+Efrat_A/0/1/0/all/0/1">Alon Efrat</a>, <a href="http://arxiv.org/find/cs/1/au:+Polishchuk_V/0/1/0/all/0/1">Valentin Polishchuk</a>, <a href="http://arxiv.org/find/cs/1/au:+Chertkov_M/0/1/0/all/0/1">Michael Chertkov</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:315;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.05067";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"The Flaws of Policies Requiring Human Oversight of Government Algorithms. (arXiv:2109.05067v3 [cs.HC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.05067";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1755:"<p>As algorithms become an influential component of government decision-making around the world, policymakers have debated how governments can attain the benefits of algorithms while preventing the harms of algorithms. One mechanism that has become a centerpiece of global efforts to regulate government algorithms is to require human oversight of algorithmic decisions. Despite the widespread turn to human oversight, these policies rest on an uninterrogated assumption: that people are able to effectively oversee algorithmic decision-making. In this article, I survey 41 policies that prescribe human oversight of government algorithms and find that they suffer from two significant flaws. First, evidence suggests that people are unable to perform the desired oversight functions. Second, as a result of the first flaw, human oversight policies legitimize government uses of faulty and controversial algorithms without addressing the fundamental issues with these tools. Thus, rather than protect against the potential harms of algorithmic decision-making in government, human oversight policies provide a false sense of security in adopting algorithms and enable vendors and agencies to shirk accountability for algorithmic harms. In light of these flaws, I propose a shift from human oversight to institutional oversight as the central mechanism for regulating government algorithms. This institutional approach operates in two stages. First, agencies must justify that it is appropriate to incorporate an algorithm into decision-making and that any proposed forms of human oversight are supported by empirical evidence. Second, these justifications must receive democratic public review and approval before the agency can adopt the algorithm. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:77:" <a href="http://arxiv.org/find/cs/1/au:+Green_B/0/1/0/all/0/1">Ben Green</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:316;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.08377";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Benchmarking Feature-based Algorithm Selection Systems for Black-box Numerical Optimization. (arXiv:2109.08377v4 [cs.NE] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.08377";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1549:"<p>Feature-based algorithm selection aims to automatically find the best one from a portfolio of optimization algorithms on an unseen problem based on its landscape features. Feature-based algorithm selection has recently received attention in the research field of black-box numerical optimization. However, there is still room for analysis of algorithm selection for black-box optimization. Most previous studies have focused only on whether an algorithm selection system can outperform the single-best solver in a portfolio. In addition, a benchmarking methodology for algorithm selection systems has not been well investigated in the literature. In this context, this paper analyzes algorithm selection systems on the 24 noiseless black-box optimization benchmarking functions. First, we demonstrate that the first successful performance measure is more reliable than the expected runtime measure for benchmarking algorithm selection systems. Then, we examine the influence of randomness on the performance of algorithm selection systems. We also show that the performance of algorithm selection systems can be significantly improved by using sequential least squares programming as a pre-solver. We point out that the difficulty of outperforming the single-best solver depends on algorithm portfolios, cross-validation methods, and dimensions. Finally, we demonstrate that the effectiveness of algorithm portfolios depends on various factors. These findings provide fundamental insights for algorithm selection for black-box optimization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:81:" <a href="http://arxiv.org/find/cs/1/au:+Tanabe_R/0/1/0/all/0/1">Ryoji Tanabe</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:317;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.09374";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:137:"Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection. (arXiv:2109.09374v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.09374";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1851:"<p>Despite impressive state-of-the-art performance on a wide variety of machine learning tasks, deep learning methods can produce over-confident predictions, particularly with limited training data. Therefore, quantifying uncertainty is particularly important in critical applications such as lesion detection and clinical diagnosis, where a realistic assessment of uncertainty is essential in determining surgical margins, disease status and appropriate treatment. In this work, we propose a novel approach that uses quantile regression for quantifying aleatoric uncertainty in both supervised and unsupervised lesion detection problems. The resulting confidence intervals can be used for lesion detection and segmentation. In the unsupervised setting, we combine quantile regression with the Variational AutoEncoder (VAE). Here we address the problem of quantifying uncertainty in the images that are reconstructed by the VAE as the basis for principled outlier or lesion detection. The VAE models the output as a conditionally independent Gaussian characterized by its mean and variance. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. Here we describe an alternative Quantile-Regression VAE (QR-VAE) that avoids this variance shrinkage problem by directly estimating conditional quantiles for the input image. Using the estimated quantiles, we compute the conditional mean and variance for the input image from which we then detect outliers by thresholding at a false-discovery-rate corrected p-value. In the supervised setting, we develop binary quantile regression (BQR) for the supervised lesion segmentation task. We show how BQR can be used to capture uncertainty in lesion boundaries in a manner that characterizes expert disagreement. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:326:" <a href="http://arxiv.org/find/cs/1/au:+Akrami_H/0/1/0/all/0/1">Haleh Akrami</a>, <a href="http://arxiv.org/find/cs/1/au:+Joshi_A/0/1/0/all/0/1">Anand Joshi</a>, <a href="http://arxiv.org/find/cs/1/au:+Aydore_S/0/1/0/all/0/1">Sergul Aydore</a>, <a href="http://arxiv.org/find/cs/1/au:+Leahy_R/0/1/0/all/0/1">Richard Leahy</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:318;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.10756";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:155:"Constrained multi-agent ergodic area surveying control based on finite element approximation of the potential field. (arXiv:2109.10756v3 [math.OC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.10756";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1731:"<p>Heat Equation Driven Area Coverage (HEDAC) is a state-of-the-art multi-agent ergodic motion control guided by a gradient of a potential field. A finite element method is hereby implemented to obtain a solution of Helmholtz partial differential equation, which models the potential field for surveying motion control. This allows us to survey arbitrarily shaped domains and to include obstacles in an elegant and robust manner intrinsic to HEDAC's fundamental idea. For a simple kinematic motion, the obstacles and boundary avoidance constraints are successfully handled by directing the agent motion with the gradient of the potential. However, including additional constraints, such as the minimal clearance dsitance from stationary and moving obstacles and the minimal path curvature radius, requires further alternations of the control algorithm. We introduce a relatively simple yet robust approach for handling these constraints by formulating a straightforward optimization problem based on collision-free escapes route maneuvers. This approach provides a guaranteed collision avoidance mechanism, while being computationally inexpensive as a result of the optimization problem partitioning. The proposed motion control is evaluated in three realistic surveying scenarios simulations, showing the effectiveness of the surveying and the robustness of the control algorithm. Furthermore, potential maneuvering difficulties due to improperly defined surveying scenarios are highlighted and we provide guidelines on how to overpass them. The results are promising and indiacate real-world applicability of proposed constrained multi-agent motion control for autonomous surveying and potentially other HEDAC utilizations. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:267:" <a href="http://arxiv.org/find/math/1/au:+Ivic_S/0/1/0/all/0/1">Stefan Ivić</a>, <a href="http://arxiv.org/find/math/1/au:+Sikirica_A/0/1/0/all/0/1">Ante Sikirica</a>, <a href="http://arxiv.org/find/math/1/au:+Crnkovic_B/0/1/0/all/0/1">Bojan Crnković</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:319;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.11224";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:115:"A Novel Open Set Energy-based Flow Classifier for Network Intrusion Detection. (arXiv:2109.11224v2 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.11224";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1548:"<p>Network intrusion detection systems (NIDS) are one of many solutions that make up a computer security system. Several machine learning-based NIDS have been proposed in recent years, but most of them were developed and evaluated under the assumption that the training context is similar to the test context. In real networks, this assumption is false, given the emergence of new attacks and variants of known attacks. To deal with this reality, the open set recognition field, which is the most general task of recognizing classes not seen during training in any domain, began to gain importance in NIDS research. Yet, existing solutions are often bounded to high temporal complexities and performance bottlenecks. In this work, we propose an algorithm to be used in NIDS that performs open set recognition. Our proposal is an adaptation of the single-class Energy-based Flow Classifier (EFC), which proved to be an algorithm with strong generalization capability and low computational cost. The new version of EFC correctly classifies not only known attacks, but also unknown ones, and differs from other proposals from the literature by presenting a single layer with low temporal complexity. Our proposal was evaluated against well-established multi-class algorithms and as an open set classifier. It proved to be an accurate classifier in both evaluations, similar to the state of the art. As a conclusion of our work, we consider EFC a promising algorithm to be used in NIDS for its high performance and applicability in real networks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:510:" <a href="http://arxiv.org/find/cs/1/au:+Souza_M/0/1/0/all/0/1">Manuela M. C. Souza</a>, <a href="http://arxiv.org/find/cs/1/au:+Pontes_C/0/1/0/all/0/1">Camila Pontes</a>, <a href="http://arxiv.org/find/cs/1/au:+Gondim_J/0/1/0/all/0/1">Joao Gondim</a>, <a href="http://arxiv.org/find/cs/1/au:+Garcia_L/0/1/0/all/0/1">Luis P. F. Garcia</a>, <a href="http://arxiv.org/find/cs/1/au:+DaSilva_L/0/1/0/all/0/1">Luiz DaSilva</a>, <a href="http://arxiv.org/find/cs/1/au:+Marotta_M/0/1/0/all/0/1">Marcelo A. Marotta</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:320;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2109.12384";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:165:"Joint Progressive and Coarse-to-fine Registration of Brain MRI via Deformation Field Integration and Non-Rigid Feature Fusion. (arXiv:2109.12384v3 [eess.IV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2109.12384";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1747:"<p>Registration of brain MRI images requires to solve a deformation field, which is extremely difficult in aligning intricate brain tissues, e.g., subcortical nuclei, etc. Existing efforts resort to decomposing the target deformation field into intermediate sub-fields with either tiny motions, i.e., progressive registration stage by stage, or lower resolutions, i.e., coarse-to-fine estimation of the full-size deformation field. In this paper, we argue that those efforts are not mutually exclusive, and propose a unified framework for robust brain MRI registration in both progressive and coarse-to-fine manners simultaneously. Specifically, building on a dual-encoder U-Net, the fixed-moving MRI pair is encoded and decoded into multi-scale deformation sub-fields from coarse to fine. Each decoding block contains two proposed novel modules: i) in Deformation Field Integration (DFI), a single integrated sub-field is calculated, warping by which is equivalent to warping progressively by sub-fields from all previous decoding blocks, and ii) in Non-rigid Feature Fusion (NFF), features of the fixed-moving pair are aligned by DFI-integrated sub-field, and then fused to predict a finer sub-field. Leveraging both DFI and NFF, the target deformation field is factorized into multi-scale sub-fields, where the coarser fields alleviate the estimate of a finer one and the finer field learns to make up those misalignments insolvable by previous coarser ones. The extensive and comprehensive experimental results on both private and public datasets demonstrate a superior registration performance of brain MRI images over progressive registration only and coarse-to-fine estimation only, with an increase by at most 8% in the average Dice. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:557:" <a href="http://arxiv.org/find/eess/1/au:+Lv_J/0/1/0/all/0/1">Jinxin Lv</a>, <a href="http://arxiv.org/find/eess/1/au:+Wang_Z/0/1/0/all/0/1">Zhiwei Wang</a>, <a href="http://arxiv.org/find/eess/1/au:+Shi_H/0/1/0/all/0/1">Hongkuan Shi</a>, <a href="http://arxiv.org/find/eess/1/au:+Zhang_H/0/1/0/all/0/1">Haobo Zhang</a>, <a href="http://arxiv.org/find/eess/1/au:+Wang_S/0/1/0/all/0/1">Sheng Wang</a>, <a href="http://arxiv.org/find/eess/1/au:+Wang_Y/0/1/0/all/0/1">Yilang Wang</a>, <a href="http://arxiv.org/find/eess/1/au:+Li_Q/0/1/0/all/0/1">Qiang Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:321;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.00909";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:85:"Design and Evaluate Recomposited OR-AND-XOR-PUF. (arXiv:2110.00909v3 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.00909";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1921:"<p>Physical Unclonable Function (PUF) is a hardware security primitive with a desirable feature of low-cost. Based on the space of challenge-response pairs (CRPs), it has two categories:weak PUF and strong PUF. Though designing a reliable and secure lightweight strong PUF is challenging, there is continuing efforts to fulfill this gap due to wide range of applications enabled by strong PUF. It was prospected that the combination of MAX and MIN bit-wise operation is promising for improving the modeling resilience when MAX and MIN are employed in the PUF recomposition. The main rationale lies on the fact that each bit-wise might be mainly vulnerable to one specific type of modeling attack, combining them can have an improved holistic resilience. This work is to first evaluate the main PUF performance, in particular,uniformity and reliability of the OR-AND-XOR-PUF(OAX-PUF)-(x, y, z)-OAX-PUF. Compared with the most used l-XOR-PUF, the (x, y, z)-OAX-PUF eventually exhibits better reliability given l=x+y+z without degrading the uniformity retaining to be 50%. We further examine the modeling resilience of the (x, y, z)-OAX-PUF with four powerful attacking strategies to date, which are Logistic Regression (LR) attack, reliability assisted CMA-ES attack, multilayer perceptron (MLP) attack, and the most recent hybrid LR-reliability attack. In comparison with the XOR-APUF, the OAX-APUF successfully defeats the CAM-ES attack. However, it shows no notable modeling accuracy drop against other three attacks, though the attacking times have been greatly prolonged to LR and hybrid LR-reliability attacks. Overall, the OAX recomposition could be an alternative lightweight recomposition method compared to XOR towards constructing strong PUFs if the underlying PUF, e.g., FF-APUF, has exhibited improved resilience to modeling attack, because the OAX incurs smaller reliability degradation compared to XOR. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:462:" <a href="http://arxiv.org/find/cs/1/au:+Yao_J/0/1/0/all/0/1">Jianrong Yao</a>, <a href="http://arxiv.org/find/cs/1/au:+Pang_L/0/1/0/all/0/1">Lihui Pang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_Z/0/1/0/all/0/1">Zhi Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_W/0/1/0/all/0/1">Wei Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Fu_A/0/1/0/all/0/1">Anmin Fu</a>, <a href="http://arxiv.org/find/cs/1/au:+Gao_Y/0/1/0/all/0/1">Yansong Gao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:322;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.01931";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:98:"Anchor-free Oriented Proposal Generator for Object Detection. (arXiv:2110.01931v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.01931";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1403:"<p>Oriented object detection is a practical and challenging task in remote sensing image interpretation. Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them. However, the horizontal boxes are inclined to get small Intersection-over-Unions (IoUs) with ground truths, which may have some undesirable effects, such as introducing redundant noise, mismatching with ground truths, detracting from the robustness of detectors, etc. In this paper, we propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons horizontal box-related operations from the network architecture. AOPG first produces coarse oriented boxes by a Coarse Location Module (CLM) in an anchor-free manner and then refines them into high-quality oriented proposals. After AOPG, we apply a Fast R-CNN head to produce the final detection results. Furthermore, the shortage of large-scale datasets is also a hindrance to the development of oriented object detection. To alleviate the data insufficiency, we release a new dataset on the basis of our DIOR dataset and name it DIOR-R. Massive experiments demonstrate the effectiveness of AOPG. Particularly, without bells and whistles, we achieve the accuracy of 64.41%, 75.24% and 96.22% mAP on the DIOR-R, DOTA and HRSC2016 datasets respectively. Code and models are available at https://github.com/jbwang1997/AOPG. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:541:" <a href="http://arxiv.org/find/cs/1/au:+Cheng_G/0/1/0/all/0/1">Gong Cheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">Jiabao Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_K/0/1/0/all/0/1">Ke Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Xie_X/0/1/0/all/0/1">Xingxing Xie</a>, <a href="http://arxiv.org/find/cs/1/au:+Lang_C/0/1/0/all/0/1">Chunbo Lang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yao_Y/0/1/0/all/0/1">Yanqing Yao</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_J/0/1/0/all/0/1">Junwei Han</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:323;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.02007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:96:"Empowering Local Communities Using Artificial Intelligence. (arXiv:2110.02007v3 [cs.AI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.02007";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1010:"<p>Artificial Intelligence (AI) is increasingly used to analyze large amounts of data in various practices, such as object recognition. We are specifically interested in using AI-powered systems to engage local communities in developing plans or solutions for pressing societal and environmental concerns. Such local contexts often involve multiple stakeholders with different and even contradictory agendas, resulting in mismatched expectations of these systems' behaviors and desired outcomes. There is a need to investigate if AI models and pipelines can work as expected in different contexts through co-creation and field deployment. Based on case studies in co-creating AI-powered systems with local people, we explain challenges that require more attention and provide viable paths to bridge AI research with citizen needs. We advocate for developing new collaboration approaches and mindsets that are needed to co-create AI-powered systems in multi-stakeholder contexts to address local concerns. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:522:" <a href="http://arxiv.org/find/cs/1/au:+Hsu_Y/0/1/0/all/0/1">Yen-Chia Hsu</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_T/0/1/0/all/0/1">Ting-Hao 'Kenneth' Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Verma_H/0/1/0/all/0/1">Himanshu Verma</a>, <a href="http://arxiv.org/find/cs/1/au:+Mauri_A/0/1/0/all/0/1">Andrea Mauri</a>, <a href="http://arxiv.org/find/cs/1/au:+Nourbakhsh_I/0/1/0/all/0/1">Illah Nourbakhsh</a>, <a href="http://arxiv.org/find/cs/1/au:+Bozzon_A/0/1/0/all/0/1">Alessandro Bozzon</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:324;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.03684";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:91:"Cross-Domain Imitation Learning via Optimal Transport. (arXiv:2110.03684v3 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.03684";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:897:"<p>Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology. Comparing trajectories and stationary distributions between the expert and imitation agents is challenging because they live on different systems that may not even have the same dimensionality. We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents. Our theory formally characterizes the scenarios where GWIL preserves optimality, revealing its possibilities and limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous control domains ranging from simple rigid transformation of the expert domain to arbitrary transformation of the state-action space. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:334:" <a href="http://arxiv.org/find/cs/1/au:+Fickinger_A/0/1/0/all/0/1">Arnaud Fickinger</a>, <a href="http://arxiv.org/find/cs/1/au:+Cohen_S/0/1/0/all/0/1">Samuel Cohen</a>, <a href="http://arxiv.org/find/cs/1/au:+Russell_S/0/1/0/all/0/1">Stuart Russell</a>, <a href="http://arxiv.org/find/cs/1/au:+Amos_B/0/1/0/all/0/1">Brandon Amos</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:325;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.03855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:109:"Hardware Functional Obfuscation With Ferroelectric Active Interconnects. (arXiv:2110.03855v2 [cs.ET] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.03855";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1793:"<p>Camouflaging gate techniques are typically used in hardware security to prevent reverse engineering. Layout level camouflaging by adding dummy contacts ensures some level of protection against extracting the correct netlist. Threshold voltage manipulation for multi-functional logic with identical layouts has also been introduced for functional obfuscation. All these techniques are implemented at the expense of circuit-complexity and with significant area, energy, and delay penalty. In this paper, we propose an efficient hardware encryption technique with minimal complexity and overheads based on ferroelectric field-effect transistor (FeFET) active interconnects. The active interconnect provides run-time reconfigurable inverter-buffer logic by utilizing the threshold voltage programmability of the FeFETs. Our method utilizes only two FeFETs and an inverter to realize the masking function compared to recent reconfigurable logic gate implementations using several FeFETs and complex differential logic. We fabricate the proposed circuit and demonstrate the functionality. Judicious placement of the proposed logic in the IC makes it acts as a hardware encryption key and enables encoding and decoding of the functional output without affecting the critical path timing delay. Also, we achieve comparable encryption probability with a limited number of encryption units. In addition, we show a peripheral programming scheme for reconfigurable logic by reusing the existing scan chain logic, hence obviating the need for specialized programming logic and circuitry for keybit distribution. Our analysis shows an average encryption probability of 97.43% with an increase of 2.24%/ 3.67% delay for the most critical path/ sum of 100 critical paths delay for ISCAS85 benchmarks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:880:" <a href="http://arxiv.org/find/cs/1/au:+Yu_T/0/1/0/all/0/1">Tonggunag Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yixin Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_S/0/1/0/all/0/1">Shan Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_Z/0/1/0/all/0/1">Zijian Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Jao_N/0/1/0/all/0/1">Nicolas Jao</a>, <a href="http://arxiv.org/find/cs/1/au:+Kim_Y/0/1/0/all/0/1">You Sung Kim</a>, <a href="http://arxiv.org/find/cs/1/au:+Duenkel_S/0/1/0/all/0/1">Stefan Duenkel</a>, <a href="http://arxiv.org/find/cs/1/au:+Beyer_S/0/1/0/all/0/1">Sven Beyer</a>, <a href="http://arxiv.org/find/cs/1/au:+Ni_K/0/1/0/all/0/1">Kai Ni</a>, <a href="http://arxiv.org/find/cs/1/au:+George_S/0/1/0/all/0/1">Sumitha George</a>, <a href="http://arxiv.org/find/cs/1/au:+Narayanan_V/0/1/0/all/0/1">Vijaykrishnan Narayanan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:326;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.06354";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Tell Me How to Survey: Literature Review Made Simple with Automatic Reading Path Generation. (arXiv:2110.06354v3 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.06354";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1609:"<p>Recent years have witnessed the dramatic growth of paper volumes with plenty of new research papers published every day, especially in the area of computer science. How to glean papers worth reading from the massive literature to do a quick survey or keep up with the latest advancement about a specific research topic has become a challenging task. Existing academic search engines such as Google Scholar return relevant papers by individually calculating the relevance between each paper and query. However, such systems usually omit the prerequisite chains of a research topic and cannot form a meaningful reading path. In this paper, we introduce a new task named Reading Path Generation (RPG) which aims at automatically producing a path of papers to read for a given query. To serve as a research benchmark, we further propose SurveyBank, a dataset consisting of large quantities of survey papers in the field of computer science as well as their citation relationships. Each survey paper contains key phrases extracted from its title and multi-level reading lists inferred from its references. Furthermore, we propose a graph-optimization-based approach for reading path generation which takes the relationship between papers into account. Extensive evaluations demonstrate that our approach outperforms other baselines. A Real-time Reading Path Generation System (RePaGer) has been also implemented with our designed model. To the best of our knowledge, we are the first to target this important research problem. Our source code of RePaGer system and SurveyBank dataset can be found on here. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:626:" <a href="http://arxiv.org/find/cs/1/au:+Ding_J/0/1/0/all/0/1">Jiayuan Ding</a>, <a href="http://arxiv.org/find/cs/1/au:+Xiang_T/0/1/0/all/0/1">Tong Xiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Ou_Z/0/1/0/all/0/1">Zijing Ou</a>, <a href="http://arxiv.org/find/cs/1/au:+Zuo_W/0/1/0/all/0/1">Wangyang Zuo</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_R/0/1/0/all/0/1">Ruihui Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Lin_C/0/1/0/all/0/1">Chenghua Lin</a>, <a href="http://arxiv.org/find/cs/1/au:+Zheng_Y/0/1/0/all/0/1">Yefeng Zheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_B/0/1/0/all/0/1">Bang Liu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:327;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.07855";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:86:"Hierarchical Curriculum Learning for AMR Parsing. (arXiv:2110.07855v5 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.07855";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:970:"<p>Abstract Meaning Representation (AMR) parsing aims to translate sentences to semantic representation with a hierarchical structure, and is recently empowered by pretrained sequence-to-sequence models. However, there exists a gap between their flat training objective (i.e., equally treats all output tokens) and the hierarchical AMR structure, which limits the model generalization. To bridge this gap, we propose a Hierarchical Curriculum Learning (HCL) framework with Structure-level (SC) and Instance-level Curricula (IC). SC switches progressively from core to detail AMR semantic elements while IC transits from structure-simple to -complex AMR instances during training. Through these two warming-up processes, HCL reduces the difficulty of learning complex structures, thus the flat model can better adapt to the AMR hierarchy. Extensive experiments on AMR2.0, AMR3.0, structure-complex and out-of-distribution situations verify the effectiveness of HCL. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:543:" <a href="http://arxiv.org/find/cs/1/au:+Wang_P/0/1/0/all/0/1">Peiyi Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_L/0/1/0/all/0/1">Liang Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_T/0/1/0/all/0/1">Tianyu Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dai_D/0/1/0/all/0/1">Damai Dai</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_Y/0/1/0/all/0/1">Yunbo Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Chang_B/0/1/0/all/0/1">Baobao Chang</a>, <a href="http://arxiv.org/find/cs/1/au:+Sui_Z/0/1/0/all/0/1">Zhifang Sui</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:328;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.07957";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"Don't speak too fast: The impact of data bias on self-supervised speech models. (arXiv:2110.07957v3 [eess.AS] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.07957";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:716:"<p>Self-supervised Speech Models (S3Ms) have been proven successful in many speech downstream tasks, like ASR. However, how pre-training data affects S3Ms' downstream behavior remains an unexplored issue. In this paper, we study how pre-training data affects S3Ms by pre-training models on biased datasets targeting different factors of speech, including gender, content, and prosody, and evaluate these pre-trained S3Ms on selected downstream tasks in SUPERB Benchmark. Our experiments show that S3Ms have tolerance toward gender bias. Moreover, we find that the content of speech has little impact on the performance of S3Ms across downstream tasks, but S3Ms do show a preference toward a slower speech rate. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:318:" <a href="http://arxiv.org/find/eess/1/au:+Meng_Y/0/1/0/all/0/1">Yen Meng</a>, <a href="http://arxiv.org/find/eess/1/au:+Chou_Y/0/1/0/all/0/1">Yi-Hui Chou</a>, <a href="http://arxiv.org/find/eess/1/au:+Liu_A/0/1/0/all/0/1">Andy T. Liu</a>, <a href="http://arxiv.org/find/eess/1/au:+Lee_H/0/1/0/all/0/1">Hung-yi Lee</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:329;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.10106";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:98:"Subframework-Based Rigidity Control in Multirobot Networks. (arXiv:2110.10106v2 [eess.SY] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.10106";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:851:"<p>This paper presents an alternative approach to the study of distance rigidity in networks of mobile agents, based on a subframework scheme. The advantage of the proposed strategy lies in expressing framework rigidity, which is inherently global, as a set of local properties. Also, we show that a framework's normalized rigidity eigenvalue degrades as the graph's diameter increases. Thus, the rigidity eigenvalue associated to each subframework arise naturally as a local rigidity metric. A decentralized subframework-based controller for maintaining rigidity using only range measurements is developed, which is also aimed to minimize the network's communication load. Finally, we show that the information exchange required by the controller is completed in a finite number of iterations, indicating the convenience of the proposed scheme. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:364:" <a href="http://arxiv.org/find/eess/1/au:+Presenza_J/0/1/0/all/0/1">Juan F. Presenza</a>, <a href="http://arxiv.org/find/eess/1/au:+Alvarez_Hamelin_J/0/1/0/all/0/1">J. Ignacio Alvarez-Hamelin</a>, <a href="http://arxiv.org/find/eess/1/au:+Mas_I/0/1/0/all/0/1">Ignacio Mas</a>, <a href="http://arxiv.org/find/eess/1/au:+Giribet_J/0/1/0/all/0/1">Juan I. Giribet</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:330;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.11996";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:130:"The Eigenvectors of Single-spiked Complex Wishart Matrices: Finite and Asymptotic Analyses. (arXiv:2110.11996v2 [math.PR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.11996";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1596:"<p>Let $\mathbf{W}\in\mathbb{C}^{n\times n}$ be a {\it single-spiked} Wishart matrix in the class $\mathbf{W}\sim \mathcal{CW}_n(m,\mathbf{I}_n+ \theta \mathbf{v}\mathbf{v}^\dagger) $ with $m\geq n$, where $\mathbf{I}_n$ is the $n\times n$ identity matrix, $\mathbf{v}\in\mathbb{C}^{n\times 1}$ is an arbitrary vector with unit Euclidean norm, $\theta\geq 0$ is a non-random parameter, and $(\cdot)^\dagger$ represents the conjugate-transpose operator. Let $\mathbf{u}_1$ and $\mathbf{u}_n$ denote the eigenvectors corresponding to the samllest and the largest eigenvalues of $\mathbf{W}$, respectively. This paper investigates the probability density function (p.d.f.) of the random quantity $Z_{\ell}^{(n)}=\left|\mathbf{v}^\dagger\mathbf{u}_\ell\right|^2\in(0,1)$ for $\ell=1,n$. In particular, we derive a finite dimensional closed-form p.d.f. for $Z_{1}^{(n)}$ which is amenable to asymptotic analysis as $m,n$ diverges with $m-n$ fixed. It turns out that, in this asymptotic regime, the scaled random variable $nZ_{1}^{(n)}$ converges in distribution to $\chi^2_2/2(1+\theta)$, where $\chi_2^2$ denotes a chi-squared random variable with two degrees of freedom. This reveals that $\mathbf{u}_1$ can be used to infer information about the spike. On the other hand, the finite dimensional p.d.f. of $Z_{n}^{(n)}$ is expressed as a double integral in which the integrand contains a determinant of a square matrix of dimension $(n-2)$. Although a simple solution to this double integral seems intractable, for special configurations of $n=2,3$, and $4$, we obtain closed-form expressions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:275:" <a href="http://arxiv.org/find/math/1/au:+Dharmawansa_P/0/1/0/all/0/1">Prathapasinghe Dharmawansa</a>, <a href="http://arxiv.org/find/math/1/au:+Dissanayake_P/0/1/0/all/0/1">Pasan Dissanayake</a>, <a href="http://arxiv.org/find/math/1/au:+Chen_Y/0/1/0/all/0/1">Yang Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:331;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.12194";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"RPT++: Customized Feature Representation for Siamese Visual Tracking. (arXiv:2110.12194v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.12194";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1328:"<p>While recent years have witnessed remarkable progress in the feature representation of visual tracking, the problem of feature misalignment between the classification and regression tasks is largely overlooked. The approaches of feature extraction make no difference for these two tasks in most of advanced trackers. We argue that the performance gain of visual tracking is limited since features extracted from the salient area provide more recognizable visual patterns for classification, while these around the boundaries contribute to accurately estimating the target state. </p> <p>We address this problem by proposing two customized feature extractors, named polar pooling and extreme pooling to capture task-specific visual patterns. Polar pooling plays the role of enriching information collected from the semantic keypoints for stronger classification, while extreme pooling facilitates explicit visual patterns of the object boundary for accurate target state estimation. We demonstrate the effectiveness of the task-specific feature representation by integrating it into the recent and advanced tracker RPT. Extensive experiments on several benchmarks show that our Customized Features based RPT (RPT++) achieves new state-of-the-art performances on OTB-100, VOT2018, VOT2019, GOT-10k, TrackingNet and LaSOT. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:308:" <a href="http://arxiv.org/find/cs/1/au:+Ma_Z/0/1/0/all/0/1">Ziang Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_H/0/1/0/all/0/1">Haitao Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_L/0/1/0/all/0/1">Linyuan Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yin_J/0/1/0/all/0/1">Jun Yin</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:332;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.12899";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:118:"No One Representation to Rule Them All: Overlapping Features of Training Methods. (arXiv:2110.12899v3 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.12899";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1458:"<p>Despite being able to capture a range of features of the data, high accuracy models trained with supervision tend to make similar predictions. This seemingly implies that high-performing models share similar biases regardless of training methodology, which would limit ensembling benefits and render low-accuracy models as having little practical use. Against this backdrop, recent work has developed quite different training techniques, such as large-scale contrastive learning, yielding competitively high accuracy on generalization and robustness benchmarks. This motivates us to revisit the assumption that models necessarily learn similar functions. We conduct a large-scale empirical study of models across hyper-parameters, architectures, frameworks, and datasets. We find that model pairs that diverge more in training methodology display categorically different generalization behavior, producing increasingly uncorrelated errors. We show these models specialize in subdomains of the data, leading to higher ensemble performance: with just 2 models (each with ImageNet accuracy ~76.5%), we can create ensembles with 83.4% (+7% boost). Surprisingly, we find that even significantly low-accuracy models can be used to improve high-accuracy models. Finally, we show diverging training methodology yield representations that capture overlapping (but not supersetting) feature sets which, when combined, lead to increased downstream performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:262:" <a href="http://arxiv.org/find/cs/1/au:+Gontijo_Lopes_R/0/1/0/all/0/1">Raphael Gontijo-Lopes</a>, <a href="http://arxiv.org/find/cs/1/au:+Dauphin_Y/0/1/0/all/0/1">Yann Dauphin</a>, <a href="http://arxiv.org/find/cs/1/au:+Cubuk_E/0/1/0/all/0/1">Ekin D. Cubuk</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:333;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2110.13721";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Geometric Transformer for End-to-End Molecule Properties Prediction. (arXiv:2110.13721v3 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2110.13721";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1014:"<p>Transformers have become methods of choice in many applications thanks to their ability to represent complex interactions between elements. However, extending the Transformer architecture to non-sequential data such as molecules and enabling its training on small datasets remains a challenge. In this work, we introduce a Transformer-based architecture for molecule property prediction, which is able to capture the geometry of the molecule. We modify the classical positional encoder by an initial encoding of the molecule geometry, as well as a learned gated self-attention mechanism. We further suggest an augmentation scheme for molecular data capable of avoiding the overfitting induced by the overparameterized architecture. The proposed framework outperforms the state-of-the-art methods while being based on pure machine learning solely, i.e. the method does not incorporate domain knowledge from quantum chemistry and does not use extended geometric inputs besides the pairwise atomic distances. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:163:" <a href="http://arxiv.org/find/cs/1/au:+Choukroun_Y/0/1/0/all/0/1">Yoni Choukroun</a>, <a href="http://arxiv.org/find/cs/1/au:+Wolf_L/0/1/0/all/0/1">Lior Wolf</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:334;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.00134";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Context Meta-Reinforcement Learning via Neuromodulation. (arXiv:2111.00134v3 [cs.NE] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.00134";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1221:"<p>Meta-reinforcement learning (meta-RL) algorithms enable agents to adapt quickly to tasks from few samples in dynamic environments. Such a feat is achieved through dynamic representations in an agent's policy network (obtained via reasoning about task context, model parameter updates, or both). However, obtaining rich dynamic representations for fast adaptation beyond simple benchmark problems is challenging due to the burden placed on the policy network to accommodate different policies. This paper addresses the challenge by introducing neuromodulation as a modular component to augment a standard policy network that regulates neuronal activities in order to produce efficient dynamic representations for task adaptation. The proposed extension to the policy network is evaluated across multiple discrete and continuous control environments of increasing complexity. To prove the generality and benefits of the extension in meta-RL, the neuromodulated network was applied to two state-of-the-art meta-RL algorithms (CAVIA and PEARL). The result demonstrates that meta-RL augmented with neuromodulation produces significantly better result and richer dynamic representations in comparison to the baselines. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:433:" <a href="http://arxiv.org/find/cs/1/au:+Ben_Iwhiwhu_E/0/1/0/all/0/1">Eseoghene Ben-Iwhiwhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Dick_J/0/1/0/all/0/1">Jeffery Dick</a>, <a href="http://arxiv.org/find/cs/1/au:+Ketz_N/0/1/0/all/0/1">Nicholas A. Ketz</a>, <a href="http://arxiv.org/find/cs/1/au:+Pilly_P/0/1/0/all/0/1">Praveen K. Pilly</a>, <a href="http://arxiv.org/find/cs/1/au:+Soltoggio_A/0/1/0/all/0/1">Andrea Soltoggio</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:335;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.04473";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"Senatus -- A Fast and Accurate Code-to-Code Recommendation Engine. (arXiv:2111.04473v2 [cs.SE] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.04473";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1824:"<p>Machine learning on source code (MLOnCode) is a popular research field that has been driven by the availability of large-scale code repositories and the development of powerful probabilistic and deep learning models for mining source code. Code-to-code recommendation is a task in MLOnCode that aims to recommend relevant, diverse and concise code snippets that usefully extend the code currently being written by a developer in their development environment (IDE). Code-to-code recommendation engines hold the promise of increasing developer productivity by reducing context switching from the IDE and increasing code-reuse. Existing code-to-code recommendation engines do not scale gracefully to large codebases, exhibiting a linear growth in query time as the code repository increases in size. In addition, existing code-to-code recommendation engines fail to account for the global statistics of code repositories in the ranking function, such as the distribution of code snippet lengths, leading to sub-optimal retrieval results. We address both of these weaknesses with \emph{Senatus}, a new code-to-code recommendation engine. At the core of Senatus is \emph{De-Skew} LSH a new locality sensitive hashing (LSH) algorithm that indexes the data for fast (sub-linear time) retrieval while also counteracting the skewness in the snippet length distribution using novel abstract syntax tree-based feature scoring and selection algorithms. We evaluate Senatus and find the recommendations to be of higher quality than competing baselines, while achieving faster search. For example on the CodeSearchNet dataset Senatus improves performance by 31.21\% F1 and 147.9\emph{x} faster query time compared to Facebook Aroma. Senatus also outperforms standard MinHash LSH by 29.2\% F1 and 51.02\emph{x} faster query time. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:419:" <a href="http://arxiv.org/find/cs/1/au:+Silavong_F/0/1/0/all/0/1">Fran Silavong</a>, <a href="http://arxiv.org/find/cs/1/au:+Moran_S/0/1/0/all/0/1">Sean Moran</a>, <a href="http://arxiv.org/find/cs/1/au:+Georgiadis_A/0/1/0/all/0/1">Antonios Georgiadis</a>, <a href="http://arxiv.org/find/cs/1/au:+Saphal_R/0/1/0/all/0/1">Rohan Saphal</a>, <a href="http://arxiv.org/find/cs/1/au:+Otter_R/0/1/0/all/0/1">Robert Otter</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:336;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.04476";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:121:"An Open Access Dataset of Tweets related to Exoskeletons and 100 Research Questions. (arXiv:2111.04476v2 [cs.CY] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.04476";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1539:"<p>The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications in different fields. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, opinions, and feedback related to exoskeletons, for which a comprehensive dataset of communications related to exoskeletons is necessary. The Internet of Everything style of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by the mining of relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics via tweets while sharing their views, opinions, perspectives, and feedback towards the same. To address this research challenge, this paper makes multiple scientific contributions to this field. First, it presents a novel approach of mining tweets that is not bound by any restrictions on the number of days during which the tweets can be mined. Second, by using this approach, it presents an open-access dataset of approximately 20,000 tweets related to exoskeletons, that were posted over a period of 231 days. Finally, based on a review of 108 emerging works in this field, the paper discusses multiple interdisciplinary applications </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:162:" <a href="http://arxiv.org/find/cs/1/au:+Thakur_N/0/1/0/all/0/1">Nirmalya Thakur</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_C/0/1/0/all/0/1">Chia Y. Han</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:337;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.04877";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Papaya: Practical, Private, and Scalable Federated Learning. (arXiv:2111.04877v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.04877";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1250:"<p>Cross-device Federated Learning (FL) is a distributed learning paradigm with several challenges that differentiate it from traditional distributed learning, variability in the system characteristics on each device, and millions of clients coordinating with a central server being primary ones. Most FL systems described in the literature are synchronous - they perform a synchronized aggregation of model updates from individual clients. Scaling synchronous FL is challenging since increasing the number of clients training in parallel leads to diminishing returns in training speed, analogous to large-batch training. Moreover, stragglers hinder synchronous FL training. In this work, we outline a production asynchronous FL system design. Our work tackles the aforementioned issues, sketches of some of the system design challenges and their solutions, and touches upon principles that emerged from building a production FL system for millions of clients. Empirically, we demonstrate that asynchronous FL converges faster than synchronous FL when training across nearly one hundred million devices. In particular, in high concurrency settings, asynchronous FL is 5x faster and has nearly 8x less communication overhead than synchronous FL. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:1148:" <a href="http://arxiv.org/find/cs/1/au:+Huba_D/0/1/0/all/0/1">Dzmitry Huba</a>, <a href="http://arxiv.org/find/cs/1/au:+Nguyen_J/0/1/0/all/0/1">John Nguyen</a>, <a href="http://arxiv.org/find/cs/1/au:+Malik_K/0/1/0/all/0/1">Kshitiz Malik</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhu_R/0/1/0/all/0/1">Ruiyu Zhu</a>, <a href="http://arxiv.org/find/cs/1/au:+Rabbat_M/0/1/0/all/0/1">Mike Rabbat</a>, <a href="http://arxiv.org/find/cs/1/au:+Yousefpour_A/0/1/0/all/0/1">Ashkan Yousefpour</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_C/0/1/0/all/0/1">Carole-Jean Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhan_H/0/1/0/all/0/1">Hongyuan Zhan</a>, <a href="http://arxiv.org/find/cs/1/au:+Ustinov_P/0/1/0/all/0/1">Pavel Ustinov</a>, <a href="http://arxiv.org/find/cs/1/au:+Srinivas_H/0/1/0/all/0/1">Harish Srinivas</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_K/0/1/0/all/0/1">Kaikai Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Shoumikhin_A/0/1/0/all/0/1">Anthony Shoumikhin</a>, <a href="http://arxiv.org/find/cs/1/au:+Min_J/0/1/0/all/0/1">Jesik Min</a>, <a href="http://arxiv.org/find/cs/1/au:+Malek_M/0/1/0/all/0/1">Mani Malek</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:338;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.06343";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:138:"Reliability Function of Quantum Information Decoupling via the Sandwiched R\'enyi Divergence. (arXiv:2111.06343v2 [quant-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.06343";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1041:"<p>Quantum information decoupling is a fundamental quantum information processing task, which also serves as a crucial tool in a diversity of topics in quantum physics. In this paper, we characterize the reliability function of catalytic quantum information decoupling, that is, the best exponential rate under which perfect decoupling is asymptotically approached. We have obtained the exact formula when the decoupling cost is below a critical value. In the situation of high cost, we provide upper and lower bounds. This result is then applied to quantum state merging, exploiting its inherent connection to decoupling. In addition, as technical tools, we derive the exact exponents for the smoothing of the conditional min-entropy and max-information, and we prove a novel bound for the convex-split lemma. </p> <p>Our results are given in terms of the sandwiched R\'enyi divergence, providing it with a new type of operational meaning in characterizing how fast the performance of quantum information tasks approaches the perfect. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:162:" <a href="http://arxiv.org/find/quant-ph/1/au:+Li_K/0/1/0/all/0/1">Ke Li</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yao_Y/0/1/0/all/0/1">Yongsheng Yao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:339;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.08284";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:97:"Few-Shot Self-Rationalization with Natural Language Prompts. (arXiv:2111.08284v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.08284";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1121:"<p>Self-rationalization models that predict task labels and generate free-text elaborations for their predictions could enable more intuitive interaction with NLP systems. These models are, however, currently trained with a large amount of human-written free-text explanations for each task which hinders their broader usage. We propose to study a more realistic setting of self-rationalization using few training examples. We present FEB -- a standardized collection of four existing English-language datasets and associated metrics. We identify the right prompting approach by extensively exploring natural language prompts on FEB. Then, by using this prompt and scaling the model size, we demonstrate that making progress on few-shot self-rationalization is possible. We show there is still ample room for improvement in this task: the average plausibility of generated explanations assessed by human annotators is at most 51% (with GPT-3), while plausibility of human explanations is 76%. We hope that FEB and our proposed approach will spur the community to take on the few-shot self-rationalization challenge. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:340:" <a href="http://arxiv.org/find/cs/1/au:+Marasovic_A/0/1/0/all/0/1">Ana Marasović</a>, <a href="http://arxiv.org/find/cs/1/au:+Beltagy_I/0/1/0/all/0/1">Iz Beltagy</a>, <a href="http://arxiv.org/find/cs/1/au:+Downey_D/0/1/0/all/0/1">Doug Downey</a>, <a href="http://arxiv.org/find/cs/1/au:+Peters_M/0/1/0/all/0/1">Matthew E. Peters</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:340;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.08516";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:54:"Multiset Neurons. (arXiv:2111.08516v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.08516";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1465:"<p>The present work reports a comparative performance of artificial neurons obtained in terms of the real-valued Jaccard and coincidence similarity indices and respectively derived functionals. The interiority index and classic cross-correlation are also included for comparison purposes. After presenting the basic concepts related to real-valued multisets and the adopted similarity metrics, including the generalization of the real-valued Jaccard and coincidence indices to higher orders, we proceed to studying the response of a single neuron, not taking into account the output non-linearity (e.g.~sigmoid), respectively to the detection of gaussian two-dimensional stimulus in presence of displacement, magnification, intensity variation, noise and interference from additional patterns. It is shown that the real-valued Jaccard and coincidence approaches are substantially more robust and effective than the interiority index and the classic cross-correlation. The coincidence-based neurons are shown to have the best overall performance respectively to the considered type of data and perturbations. The potential of the multiset neurons is further illustrated with respect to the challenging problem of image segmentation, leading to impressive cost/benefit performance. The reported concepts, methods, and results, have substantial implications not only for pattern recognition and machine learning, but also regarding neurobiology and neuroscience. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:87:" <a href="http://arxiv.org/find/cs/1/au:+Costa_L/0/1/0/all/0/1">Luciano da F. Costa</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:341;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.09388";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:134:"High Quality Rather than High Model Probability: Minimum Bayes Risk Decoding with Neural Metrics. (arXiv:2111.09388v3 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.09388";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1011:"<p>In Neural Machine Translation, it is typically assumed that the sentence with the highest estimated probability should also be the translation with the highest quality as measured by humans. In this work, we question this assumption and show that model estimates and translation quality only vaguely correlate. We apply Minimum Bayes Risk (MBR) decoding on unbiased samples to optimize diverse automated metrics of translation quality as an alternative inference strategy to beam search. Instead of targeting the hypotheses with the highest model probability, MBR decoding extracts the hypotheses with the highest estimated quality. Our experiments show that the combination of a neural translation model with a neural reference-based metric, BLEURT, results in significant improvement in human evaluations. This improvement is obtained with translations different from classical beam-search output: these translations have much lower model likelihood and are less favored by surface metrics like BLEU. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:326:" <a href="http://arxiv.org/find/cs/1/au:+Freitag_M/0/1/0/all/0/1">Markus Freitag</a>, <a href="http://arxiv.org/find/cs/1/au:+Grangier_D/0/1/0/all/0/1">David Grangier</a>, <a href="http://arxiv.org/find/cs/1/au:+Tan_Q/0/1/0/all/0/1">Qijun Tan</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_B/0/1/0/all/0/1">Bowen Liang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:342;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.09996";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:66:"LOLNeRF: Learn from One Look. (arXiv:2111.09996v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.09996";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:997:"<p>We present a method for learning a generative 3D model based on neural radiance fields, trained solely from data with only single views of each object. While generating realistic images is no longer a difficult task, producing the corresponding 3D structure such that they can be rendered from different views is non-trivial. We show that, unlike existing methods, one does not need multi-view data to achieve this goal. Specifically, we show that by reconstructing many images aligned to an approximate canonical pose with a single network conditioned on a shared latent space, you can learn a space of radiance fields that models shape and appearance for a class of objects. We demonstrate this by training models to reconstruct object categories using datasets that contain only one view of each subject without depth or geometry information. Our experiments show that we achieve state-of-the-art results in novel view synthesis and high-quality results for monocular depth prediction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:421:" <a href="http://arxiv.org/find/cs/1/au:+Rebain_D/0/1/0/all/0/1">Daniel Rebain</a>, <a href="http://arxiv.org/find/cs/1/au:+Matthews_M/0/1/0/all/0/1">Mark Matthews</a>, <a href="http://arxiv.org/find/cs/1/au:+Yi_K/0/1/0/all/0/1">Kwang Moo Yi</a>, <a href="http://arxiv.org/find/cs/1/au:+Lagun_D/0/1/0/all/0/1">Dmitry Lagun</a>, <a href="http://arxiv.org/find/cs/1/au:+Tagliasacchi_A/0/1/0/all/0/1">Andrea Tagliasacchi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:343;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.10367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:126:"SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech. (arXiv:2111.10367v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.10367";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1434:"<p>Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:554:" <a href="http://arxiv.org/find/cs/1/au:+Shon_S/0/1/0/all/0/1">Suwon Shon</a>, <a href="http://arxiv.org/find/cs/1/au:+Pasad_A/0/1/0/all/0/1">Ankita Pasad</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_F/0/1/0/all/0/1">Felix Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Brusco_P/0/1/0/all/0/1">Pablo Brusco</a>, <a href="http://arxiv.org/find/cs/1/au:+Artzi_Y/0/1/0/all/0/1">Yoav Artzi</a>, <a href="http://arxiv.org/find/cs/1/au:+Livescu_K/0/1/0/all/0/1">Karen Livescu</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_K/0/1/0/all/0/1">Kyu J. Han</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:344;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.12860";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:139:"Applied Exoskeleton Technology: A Comprehensive Review of Physical and Cognitive Human-Robot-Interfac. (arXiv:2111.12860v6 [cs.RO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.12860";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1576:"<p>Exoskeletons and orthoses are wearable mobile systems providing mechanical benefits to the users. Despite significant improvements in the last decades, the technology is not fully mature to be adopted for strenuous and non-programmed tasks. To accommodate this insufficiency, different aspects of this technology need to be analysed and improved. Numerous studies have been trying to address some aspects of exoskeletons, e.g. mechanism design, intent prediction, and control scheme. However, most works have focused on a specific element of design or application without providing a comprehensive review framework. This study aims to analyse and survey the contributing aspects to the improvement and broad adoption of this technology. To address this, after introducing assistive devices and exoskeletons, the main design criteria will be investigated from a physical Human-Robot Interface (HRI) perspective. The study will be further developed by outlining several examples of known assistive devices in different categories. In order to establish an intelligent HRI strategy and enabling intuitive control for users, cognitive HRI will be investigated. Various approaches to this strategy will be reviewed, and a model for intent prediction will be proposed. This model is utilised to predict the gate phase from a single Electromyography (EMG) channel input. The outcomes of modelling show the potential use of single-channel input in low-power assistive devices. Furthermore, the proposed model can provide redundancy in devices with a complex control strategy. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:429:" <a href="http://arxiv.org/find/cs/1/au:+Nazari_F/0/1/0/all/0/1">Farhad Nazari</a>, <a href="http://arxiv.org/find/cs/1/au:+Mohajer_N/0/1/0/all/0/1">Navid Mohajer</a>, <a href="http://arxiv.org/find/cs/1/au:+Nahavandi_D/0/1/0/all/0/1">Darius Nahavandi</a>, <a href="http://arxiv.org/find/cs/1/au:+Khosravi_A/0/1/0/all/0/1">Abbas Khosravi</a>, <a href="http://arxiv.org/find/cs/1/au:+Nahavandi_S/0/1/0/all/0/1">Saeid Nahavandi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:345;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.14055";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. (arXiv:2111.14055v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.14055";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1397:"<p>Fast stereo based 3D object detectors have made great progress recently. However, they lag far behind high-precision stereo based methods in accuracy. We argue that the main reason is due to the poor geometry-aware feature representation in 3D space. To solve this problem, we propose an efficient stereo geometry network (ESGN). The key in our ESGN is an efficient geometry-aware feature generation (EGFG) module. Our EGFG module first uses a stereo correlation and reprojection module to construct multi-scale stereo volumes in camera frustum space, second employs a multi-scale BEV projection and fusion module to generate multiple geometry-aware features. In these two steps, we adopt deep multi-scale information fusion for discriminative geometry-aware feature generation, without any complex aggregation networks. In addition, we introduce a deep geometry-aware feature distillation scheme to guide stereo feature learning with a LiDAR-based detector. The experiments are performed on the classical KITTI dataset. On KITTI test set, our ESGN outperforms the fast state-of-art-art detector YOLOStereo3D by 5.14\% on mAP$_{3d}$ at 62$ms$. To the best of our knowledge, our ESGN achieves a best trade-off between accuracy and speed. We hope that our efficient stereo geometry network can provide more possible directions for fast 3D object detection. Our source code will be released. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:380:" <a href="http://arxiv.org/find/cs/1/au:+Gao_A/0/1/0/all/0/1">Aqi Gao</a>, <a href="http://arxiv.org/find/cs/1/au:+Pang_Y/0/1/0/all/0/1">Yanwei Pang</a>, <a href="http://arxiv.org/find/cs/1/au:+Nie_J/0/1/0/all/0/1">Jing Nie</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_J/0/1/0/all/0/1">Jiale Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Guo_Y/0/1/0/all/0/1">Yishun Guo</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:346;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.14705";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:119:"Exponential integrators for second-order in time partial differential equations. (arXiv:2111.14705v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.14705";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:419:"<p>Two types of second-order in time partial differential equations (PDEs), namely semilinear wave equations and semilinear beam equations are considered. To solve these equations with exponential integrators, we present an approach to compute efficiently the action of the matrix exponential as well as those of related matrix functions. Various numerical simulations are presented that illustrate this approach. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:171:" <a href="http://arxiv.org/find/math/1/au:+Ostermann_A/0/1/0/all/0/1">Alexander Ostermann</a>, <a href="http://arxiv.org/find/math/1/au:+Phan_D/0/1/0/all/0/1">Duy Phan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:347;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2111.15367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"A Review on Graph Neural Network Methods in Financial Applications. (arXiv:2111.15367v2 [q-fin.ST] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2111.15367";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:908:"<p>With multiple components and relations, financial data are often presented as graph data, since it could represent both the individual features and the complicated relations. Due to the complexity and volatility of the financial market, the graph constructed on the financial data is often heterogeneous or time-varying, which imposes challenges on modeling technology. Among the graph modeling technologies, graph neural network (GNN) models are able to handle the complex graph structure and achieve great performance and thus could be used to solve financial tasks. In this work, we provide a comprehensive review of GNN models in recent financial context. We first categorize the commonly-used financial graphs and summarize the feature processing step for each node. Then we summarize the GNN methodology for each graph type, application in each area, and propose some potential research areas. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:327:" <a href="http://arxiv.org/find/q-fin/1/au:+Wang_J/0/1/0/all/0/1">Jianian Wang</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Zhang_S/0/1/0/all/0/1">Sheng Zhang</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Xiao_Y/0/1/0/all/0/1">Yanghua Xiao</a>, <a href="http://arxiv.org/find/q-fin/1/au:+Song_R/0/1/0/all/0/1">Rui Song</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:348;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.00913";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:140:"CDLNet: Noise-Adaptive Convolutional Dictionary Learning Network for Blind Denoising and Demosaicing. (arXiv:2112.00913v3 [eess.IV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.00913";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1365:"<p>Deep learning based methods hold state-of-the-art results in low-level image processing tasks, but remain difficult to interpret due to their black-box construction. Unrolled optimization networks present an interpretable alternative to constructing deep neural networks by deriving their architecture from classical iterative optimization methods without use of tricks from the standard deep learning tool-box. So far, such methods have demonstrated performance close to that of state-of-the-art models while using their interpretable construction to achieve a comparably low learned parameter count. In this work, we propose an unrolled convolutional dictionary learning network (CDLNet) and demonstrate its competitive denoising and joint denoising and demosaicing (JDD) performance both in low and high parameter count regimes. Specifically, we show that the proposed model outperforms state-of-the-art fully convolutional denoising and JDD models when scaled to a similar parameter count. In addition, we leverage the model's interpretable construction to propose a noise-adaptive parameterization of thresholds in the network that enables state-of-the-art blind denoising performance, and near perfect generalization on noise-levels unseen during training. Furthermore, we show that such performance extends to the JDD task and unsupervised learning. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:296:" <a href="http://arxiv.org/find/eess/1/au:+Janjusevic_N/0/1/0/all/0/1">Nikola Janjušević</a>, <a href="http://arxiv.org/find/eess/1/au:+Khalilian_Gourtani_A/0/1/0/all/0/1">Amirhossein Khalilian-Gourtani</a>, <a href="http://arxiv.org/find/eess/1/au:+Wang_Y/0/1/0/all/0/1">Yao Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:349;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.02731";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Detecting DeFi Securities Violations from Token Smart Contract Code. (arXiv:2112.02731v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.02731";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1639:"<p>Decentralized Finance (DeFi) is a system of financial products and services built and delivered through smart contracts on various blockchains. In the past year, DeFi has gained popularity and market capitalization. However, it has also been connected to crime, in particular, various types of securities violations. The lack of Know Your Customer requirements in DeFi poses challenges to governments trying to mitigate potential offending in this space. This study aims to uncover whether this problem is suited to a machine learning approach, namely, whether we can identify DeFi projects potentially engaging in securities violations based on their tokens' smart contract code. We adapt prior work on detecting specific types of securities violations across Ethereum, building a random forest classifier based on features extracted from DeFi projects' tokens' smart contract code. The final classifier achieves a 98.6% F1-score. From further feature-level analysis, we find a single feature makes this a highly detectable problem. The high reliance on a single feature means that, at this stage, a complex machine learning model may not be necessary or desirable for this problem. However, this may change as DeFi securities violations become more sophisticated. Another contribution of our study is a new dataset, comprised of (a) a verified ground truth dataset for tokens involved in securities violations and (b) a set of legitimate tokens from a reputable DeFi aggregator. This paper further discusses the potential use of a model like ours by prosecutors in enforcement efforts and connects it to the wider legal context. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:254:" <a href="http://arxiv.org/find/cs/1/au:+Trozze_A/0/1/0/all/0/1">Arianna Trozze</a>, <a href="http://arxiv.org/find/cs/1/au:+Kleinberg_B/0/1/0/all/0/1">Bennett Kleinberg</a>, <a href="http://arxiv.org/find/cs/1/au:+Davies_T/0/1/0/all/0/1">Toby Davies</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:350;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.06147";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:144:"Self-Supervised Modality-Aware Multiple Granularity Pre-Training for RGB-Infrared Person Re-Identification. (arXiv:2112.06147v3 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.06147";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1931:"<p>RGB-Infrared person re-identification (RGB-IR ReID) aims to associate people across disjoint RGB and IR camera views. Currently, state-of-the-art performance of RGB-IR ReID is not as impressive as that of conventional ReID. Much of that is due to the notorious modality bias training issue brought by the single-modality ImageNet pre-training, which might yield RGB-biased representations that severely hinder the cross-modality image retrieval. This paper makes first attempt to tackle the task from a pre-training perspective. We propose a self-supervised pre-training solution, named Modality-Aware Multiple Granularity Learning (MMGL), which directly trains models from scratch only on multi-modal ReID datasets, but achieving competitive results against ImageNet pre-training, without using any external data or sophisticated tuning tricks. First, we develop a simple-but-effective 'permutation recovery' pretext task that globally maps shuffled RGB-IR images into a shared latent permutation space, providing modality-invariant global representations for downstream ReID tasks. Second, we present a part-aware cycle-contrastive (PCC) learning strategy that utilizes cross-modality cycle-consistency to maximize agreement between semantically similar RGB-IR image patches. This enables contrastive learning for the unpaired multi-modal scenarios, further improving the discriminability of local features without laborious instance augmentation. Based on these designs, MMGL effectively alleviates the modality bias training problem. Extensive experiments demonstrate that it learns better representations (+8.03% Rank-1 accuracy) with faster training speed (converge only in few hours) and higher data efficiency (<5% data size) than ImageNet pre-training. The results also suggest it generalizes well to various existing models, losses and has promising transferability across datasets. The code will be released. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:470:" <a href="http://arxiv.org/find/cs/1/au:+Wan_L/0/1/0/all/0/1">Lin Wan</a>, <a href="http://arxiv.org/find/cs/1/au:+Jing_Q/0/1/0/all/0/1">Qianyan Jing</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_Z/0/1/0/all/0/1">Zongyuan Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_C/0/1/0/all/0/1">Chuang Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Z/0/1/0/all/0/1">Zhihang Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_Y/0/1/0/all/0/1">Yehansen Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:351;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.06377";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"Surfer100: Generating Surveys From Web Resources, Wikipedia-style. (arXiv:2112.06377v3 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.06377";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:842:"<p>Fast-developing fields such as Artificial Intelligence (AI) often outpace the efforts of encyclopedic sources such as Wikipedia, which either do not completely cover recently-introduced topics or lack such content entirely. As a result, methods for automatically producing content are valuable tools to address this information overload. We show that recent advances in pretrained language modeling can be combined for a two-stage extractive and abstractive approach for Wikipedia lead paragraph generation. We extend this approach to generate longer Wikipedia-style summaries with sections and examine how such methods struggle in this application through detailed studies with 100 reference human-collected surveys. This is the first study on utilizing web resources for long Wikipedia-style summaries to the best of our knowledge. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:799:" <a href="http://arxiv.org/find/cs/1/au:+Li_I/0/1/0/all/0/1">Irene Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Fabbri_A/0/1/0/all/0/1">Alexander Fabbri</a>, <a href="http://arxiv.org/find/cs/1/au:+Kawamura_R/0/1/0/all/0/1">Rina Kawamura</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yixin Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_X/0/1/0/all/0/1">Xiangru Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Tae_J/0/1/0/all/0/1">Jaesung Tae</a>, <a href="http://arxiv.org/find/cs/1/au:+Shen_C/0/1/0/all/0/1">Chang Shen</a>, <a href="http://arxiv.org/find/cs/1/au:+Ma_S/0/1/0/all/0/1">Sally Ma</a>, <a href="http://arxiv.org/find/cs/1/au:+Mizutani_T/0/1/0/all/0/1">Tomoe Mizutani</a>, <a href="http://arxiv.org/find/cs/1/au:+Radev_D/0/1/0/all/0/1">Dragomir Radev</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:352;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.06455";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"Self-Paced Deep Regression Forests with Consideration on Ranking Fairness. (arXiv:2112.06455v5 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.06455";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1602:"<p>Deep discriminative models (DDMs), such as deep regression forests, deep neural decision forests, have been extensively studied recently to solve problems like facial age estimation, head pose estimation, gaze estimation and so forth. Such problems are challenging in part because a large amount of effective training data without noise and bias is often not available. While some progress has been achieved through learning more discriminative features, or reweighting samples, we argue what is more desirable is to learn gradually to discriminate like human beings. Then, we resort to self-paced learning (SPL). But a natural question arises: can self-paced regime lead DDMs to achieve more robust and less biased solutions? A serious problem with SPL, which is firstly discussed by this work, is it tends to aggravate the bias of solutions, especially for obvious imbalanced data. To this end, this paper proposes a new self-paced paradigm for deep discriminative model, which distinguishes noisy and underrepresented examples according to the output likelihood and entropy associated with each example, and tackle the fundamental ranking problem in SPL from a new perspective: fairness. This paradigm is fundamental, and could be easily combined with a variety of DDMs. Extensive experiments on three computer vision tasks, such as facial age estimation, head pose estimation and gaze estimation, demonstrate the efficacy of our paradigm. To the best of our knowledge, our work is the first paper in the literature of SPL that considers ranking fairness for self-paced regime construction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:387:" <a href="http://arxiv.org/find/cs/1/au:+Pan_L/0/1/0/all/0/1">Lili Pan</a>, <a href="http://arxiv.org/find/cs/1/au:+Meng_M/0/1/0/all/0/1">Mingming Meng</a>, <a href="http://arxiv.org/find/cs/1/au:+Ren_Y/0/1/0/all/0/1">Yazhou Ren</a>, <a href="http://arxiv.org/find/cs/1/au:+Zheng_Y/0/1/0/all/0/1">Yali Zheng</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Z/0/1/0/all/0/1">Zenglin Xu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:353;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.07428";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Obtaining Calibrated Probabilities with Personalized Ranking Models. (arXiv:2112.07428v2 [cs.IR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.07428";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1164:"<p>For personalized ranking models, the well-calibrated probability of an item being preferred by a user has great practical value. While existing work shows promising results in image classification, probability calibration has not been much explored for personalized ranking. In this paper, we aim to estimate the calibrated probability of how likely a user will prefer an item. We investigate various parametric distributions and propose two parametric calibration methods, namely Gaussian calibration and Gamma calibration. Each proposed method can be seen as a post-processing function that maps the ranking scores of pre-trained models to well-calibrated preference probabilities, without affecting the recommendation performance. We also design the unbiased empirical risk minimization framework that guides the calibration methods to learning of true preference probability from the biased user-item interaction dataset. Extensive evaluations with various personalized ranking models on real-world datasets show that both the proposed calibration methods and the unbiased empirical risk minimization significantly improve the calibration performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:235:" <a href="http://arxiv.org/find/cs/1/au:+Kweon_W/0/1/0/all/0/1">Wonbin Kweon</a>, <a href="http://arxiv.org/find/cs/1/au:+Kang_S/0/1/0/all/0/1">SeongKu Kang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_H/0/1/0/all/0/1">Hwanjo Yu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:354;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.08908";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:146:"Effective highly accurate integrators for linear Klein-Gordon equations from low to high frequency regimes. (arXiv:2112.08908v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.08908";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:713:"<p>We introduce an efficient class of numerical schemes for the Klein--Gordon equation which are highly accurate from slowly varying up to highly oscillatory regimes. Their construction is based on Magnus expansions tailored to the structure of the input term which allows us to resolve the oscillations in the system up to second order convergence in time uniformly in all frequencies $\omega_n$. Depending on the nature of the oscillatory term, the proposed methods even show superior convergence, reaching up to fourth-order convergence, while maintaining high efficiency and small error constants. Numerical experiments highlight our theoretical findings and underline the efficiency of the new schemes. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:279:" <a href="http://arxiv.org/find/math/1/au:+Kropielnicka_K/0/1/0/all/0/1">Karolina Kropielnicka</a>, <a href="http://arxiv.org/find/math/1/au:+Lademann_K/0/1/0/all/0/1">Karolina Lademann</a>, <a href="http://arxiv.org/find/math/1/au:+Schratz_K/0/1/0/all/0/1">Katharina Schratz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:355;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.10601";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:131:"Error estimates for a splitting integrator for abstract semilinear boundary coupled systems. (arXiv:2112.10601v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.10601";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:677:"<p>We derive a numerical method, based on operator splitting, to abstract parabolic semilinear boundary coupled systems. The method decouples the linear components which describe the coupling and the dynamics in the bulk and on the surface, and treats the nonlinear terms by approximating the integral in the variation of constants formula. The convergence proof is based on estimates for a recursive formulation of the error, using the parabolic smoothing property of analytic semigroups and a careful comparison of the exact and approximate flows. Numerical experiments, including problems with dynamic boundary conditions, reporting on convergence rates are presented. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:273:" <a href="http://arxiv.org/find/math/1/au:+Csomos_P/0/1/0/all/0/1">Petra Csomós</a>, <a href="http://arxiv.org/find/math/1/au:+Farkas_B/0/1/0/all/0/1">Bálint Farkas</a>, <a href="http://arxiv.org/find/math/1/au:+Kovacs_B/0/1/0/all/0/1">Balázs Kovács</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:356;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.11635";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:139:"Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference. (arXiv:2112.11635v3 [quant-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.11635";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1468:"<p>Twin-field quantum key distribution can overcome the secret key capacity of repeaterless quantum key distribution via single-photon interference. However, to compensate for the channel fluctuations and lock the laser fluctuations, the techniques of phase tracking and phase locking are indispensable in experiment, which drastically increase experimental complexity and hinder free-space realization. Inspired by the duality in entanglement, we herein present an asynchronous measurement-device-independent quantum key distribution protocol that can surpass the secret key capacity even without phase tracking and phase locking. Leveraging the concept of time multiplexing, asynchronous two-photon Bell-state measurement is realized by postmatching two interference detection events. For a 1 GHz system, the new protocol reaches a transmission distance of 450 km without phase tracking. After further removing phase locking, our protocol is still capable of breaking the capacity at 270 km. Intriguingly, when using the same experimental techniques, our protocol has a higher key rate than the phase-matching-type twin-field protocol. In the presence of imperfect intensity modulation, it also has a significant advantage in terms of the transmission distance over the sending-or-not-sending type twin-field protocol. With high key rates and accessible technology, our work provides a promising candidate for practical scalable quantum communication networks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:835:" <a href="http://arxiv.org/find/quant-ph/1/au:+Xie_Y/0/1/0/all/0/1">Yuan-Mei Xie</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Lu_Y/0/1/0/all/0/1">Yu-Shuo Lu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Weng_C/0/1/0/all/0/1">Chen-Xun Weng</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Cao_X/0/1/0/all/0/1">Xiao-Yu Cao</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Jia_Z/0/1/0/all/0/1">Zhao-Ying Jia</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Bao_Y/0/1/0/all/0/1">Yu Bao</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Wang_Y/0/1/0/all/0/1">Yang Wang</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Fu_Y/0/1/0/all/0/1">Yao Fu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yin_H/0/1/0/all/0/1">Hua-Lei Yin</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Chen_Z/0/1/0/all/0/1">Zeng-Bing Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:357;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.12021";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"Community Detection in Medical Image Datasets: Using Wavelets and Spectral Methods. (arXiv:2112.12021v2 [eess.IV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.12021";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1643:"<p>Medical image datasets can have large number of images representing patients with different health conditions and various disease severity. When dealing with raw unlabeled image datasets, the large number of samples often makes it hard for experts and non-experts to understand the variety of images present in a dataset. Supervised learning methods rely on labeled images which requires a considerable effort by medical experts to first understand the communities of images present in the data and then labeling the images. Here, we propose an algorithm to facilitate the automatic identification of communities in medical image datasets. We further demonstrate that such analysis can be insightful in a supervised setting when the images are already labeled. Such insights are useful because, health and disease severity can be considered a continuous spectrum, and within each class, there usually are finer communities worthy of investigation, especially when they have similarities to communities in other classes. In our approach, we use wavelet decomposition of images in tandem with spectral methods. We show that the eigenvalues of a graph Laplacian can reveal the number of notable communities in an image dataset. Moreover, analyzing the similarities may be used to infer a spectrum representing the severity of the disease. In our experiments, we use a dataset of images labeled with different conditions for COVID patients. We detect 25 communities in the dataset and then observe that only 6 of those communities contain patients with pneumonia. We also investigate the contents of a colorectal cancer histology dataset. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:95:" <a href="http://arxiv.org/find/eess/1/au:+Yousefzadeh_R/0/1/0/all/0/1">Roozbeh Yousefzadeh</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:358;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2112.13168";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"AI-Bind: Improving Binding Predictions for Novel Protein Targets and Ligands. (arXiv:2112.13168v3 [q-bio.QM] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2112.13168";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1358:"<p>Identifying novel drug-target interactions (DTI) is a critical and rate limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We first unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Then, we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training, allowing us to limit the annotation imbalance and improve binding predictions for novel proteins and ligands. We illustrate the value of AI-Bind by predicting drugs and natural compounds with binding affinity to SARS-CoV-2 viral proteins and the associated human proteins. We also validate these predictions via auto-docking simulations and comparison with recent experimental evidence, and step up the process of interpreting machine learning prediction of protein-ligand binding by identifying potential active binding sites on the amino acid sequence. Overall, AI-Bind offers a powerful high-throughput approach to identify drug-target combinations, with the potential of becoming a powerful tool in drug discovery. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:893:" <a href="http://arxiv.org/find/q-bio/1/au:+Chatterjee_A/0/1/0/all/0/1">Ayan Chatterjee</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Walters_R/0/1/0/all/0/1">Robin Walters</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Shafi_Z/0/1/0/all/0/1">Zohair Shafi</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Ahmed_O/0/1/0/all/0/1">Omair Shafi Ahmed</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Sebek_M/0/1/0/all/0/1">Michael Sebek</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Gysi_D/0/1/0/all/0/1">Deisy Gysi</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Yu_R/0/1/0/all/0/1">Rose Yu</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Eliassi_Rad_T/0/1/0/all/0/1">Tina Eliassi-Rad</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Barabasi_A/0/1/0/all/0/1">Albert-László Barabási</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Menichetti_G/0/1/0/all/0/1">Giulia Menichetti</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:359;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.03413";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:89:"Systems Challenges for Trustworthy Embodied Systems. (arXiv:2201.03413v2 [cs.AI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.03413";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1066:"<p>A new generation of increasingly autonomous and self-learning embodied systems is about to be developed. When deploying embodied systems into a real-life context we face various engineering challenges, as it is crucial to coordinate the behavior of embodied systems in a beneficial manner, ensure their compatibility with our human-centered social values, and design verifiably safe and reliable human-machine interaction. We are arguing that traditional systems engineering is coming to a climacteric from embedded to embodied systems, and with assuring the trustworthiness of dynamic federations of situationally aware, intent-driven, explorative, ever-evolving, largely non-predictable, and increasingly autonomous embodied systems in uncertain, complex, and unpredictable real-world contexts. We are therefore identifying a number of urgent systems challenges for trustworthy embodied systems, including robust and human-centric AI, cognitive architectures, uncertainty quantification, trustworthy self-integration, and continual analysis and assurance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:84:" <a href="http://arxiv.org/find/cs/1/au:+Ruess_H/0/1/0/all/0/1">Harald Rueß</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:360;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.04196";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"A polynomial-time approximation scheme for parallel two-stage flowshops under makespan constraint. (arXiv:2201.04196v2 [cs.DS] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.04196";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:885:"<p>As a hybrid of the Parallel Two-stage Flowshop problem and the Multiple Knapsack problem, we investigate the scheduling of parallel two-stage flowshops under makespan constraint, which was motivated by applications in cloud computing and introduced by Chen et al. [3] recently. A set of two-stage jobs are selected and scheduled on parallel two-stage flowshops to achieve the maximum total profit while maintaining the given makespan constraint. We give a positive answer to an open question about its approximability proposed by Chen et al. [3]. More specifically, based on guessing strategies and rounding techniques for linear programs, we present a polynomial-time approximation scheme (PTAS) for the case when the number of flowshops is a fixed constant. As the case with two flowshops is already strongly NP-hard, our PTAS achieves the best possible approximation ratio. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:231:" <a href="http://arxiv.org/find/cs/1/au:+Tong_W/0/1/0/all/0/1">Weitian Tong</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1">Yao Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_H/0/1/0/all/0/1">Huili Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:361;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.07265";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"EP-PQM: Efficient Parametric Probabilistic Quantum Memory with Fewer Qubits and Gates. (arXiv:2201.07265v2 [cs.ET] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.07265";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1958:"<p>Machine learning (ML) classification tasks can be carried out on a quantum computer (QC) using Probabilistic Quantum Memory (PQM) and its extension, Parameteric PQM (P-PQM) by calculating the Hamming distance between an input pattern and a database of $r$ patterns containing $z$ features with $a$ distinct attributes. </p> <p>For accurate computations, the feature must be encoded using one-hot encoding, which is memory-intensive for multi-attribute datasets with $a>2$. We can easily represent multi-attribute data more compactly on a classical computer by replacing one-hot encoding with label encoding. However, replacing these encoding schemes on a QC is not straightforward as PQM and P-PQM operate at the quantum bit level. </p> <p>We present an enhanced P-PQM, called EP-PQM, that allows label encoding of data stored in a PQM data structure and reduces the circuit depth of the data storage and retrieval procedures. We show implementations for an ideal QC and a noisy intermediate-scale quantum (NISQ) device. </p> <p>Our complexity analysis shows that the EP-PQM approach requires $O\left(z \log_2(a)\right)$ qubits as opposed to $O(za)$ qubits for P-PQM. EP-PQM also requires fewer gates, reducing gate count from $O\left(rza\right)$ to $O\left(rz\log_2(a)\right)$. </p> <p>For five datasets, we demonstrate that training an ML classification model using EP-PQM requires 48% to 77% fewer qubits than P-PQM for datasets with $a>2$. EP-PQM reduces circuit depth in the range of 60% to 96%, depending on the dataset. The depth decreases further with a decomposed circuit, ranging between 94% and 99%. </p> <p>EP-PQM requires less space; thus, it can train on and classify larger datasets than previous PQM implementations on NISQ devices. Furthermore, reducing the number of gates speeds up the classification and reduces the noise associated with deep quantum circuits. Thus, EP-PQM brings us closer to scalable ML on a NISQ device. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:342:" <a href="http://arxiv.org/find/cs/1/au:+Khan_M/0/1/0/all/0/1">Mushahid Khan</a>, <a href="http://arxiv.org/find/cs/1/au:+Faye_J/0/1/0/all/0/1">Jean Paul Latyr Faye</a>, <a href="http://arxiv.org/find/cs/1/au:+Mendes_U/0/1/0/all/0/1">Udson C. Mendes</a>, <a href="http://arxiv.org/find/cs/1/au:+Miranskyy_A/0/1/0/all/0/1">Andriy Miranskyy</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:362;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.09367";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"Sketch2PQ: Freeform Planar Quadrilateral Mesh Design via a Single Sketch. (arXiv:2201.09367v4 [cs.GR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.09367";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1469:"<p>The freeform architectural modeling process often involves two important stages: concept design and digital modeling. In the first stage, architects usually sketch the overall 3D shape and the panel layout on a physical or digital paper briefly. In the second stage, a digital 3D model is created using the sketch as a reference. The digital model needs to incorporate geometric requirements for its components, such as the planarity of panels due to consideration of construction costs, which can make the modeling process more challenging. In this work, we present a novel sketch-based system to bridge the concept design and digital modeling of freeform roof-like shapes represented as planar quadrilateral (PQ) meshes. Our system allows the user to sketch the surface boundary and contour lines under axonometric projection and supports the sketching of occluded regions. In addition, the user can sketch feature lines to provide directional guidance to the PQ mesh layout. Given the 2D sketch input, we propose a deep neural network to infer in real-time the underlying surface shape along with a dense conjugate direction field, both of which are used to extract the final PQ mesh. To train and validate our network, we generate a large synthetic dataset that mimics architect sketching of freeform quadrilateral patches. The effectiveness and usability of our system are demonstrated with quantitative and qualitative evaluation as well as user studies. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:463:" <a href="http://arxiv.org/find/cs/1/au:+Deng_Z/0/1/0/all/0/1">Zhi Deng</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Y/0/1/0/all/0/1">Yang Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Pan_H/0/1/0/all/0/1">Hao Pan</a>, <a href="http://arxiv.org/find/cs/1/au:+Jabi_W/0/1/0/all/0/1">Wassim Jabi</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_J/0/1/0/all/0/1">Juyong Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Deng_B/0/1/0/all/0/1">Bailin Deng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:363;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.09419";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:154:"Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution. (arXiv:2201.09419v2 [quant-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.09419";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1440:"<p>Continuous-variable quantum key distribution (CV QKD) with discrete modulation has attracted increasing attention due to its experimental simplicity, lower-cost implementation and compatibility with classical optical communication. Correspondingly, some novel numerical methods have been proposed to analyze the security of these protocols against collective attacks, which promotes key rates over one hundred kilometers of fiber distance. However, numerical methods are limited by their calculation time and resource consumption, for which they cannot play more roles on mobile platforms in quantum networks. To improve this issue, a neural network model predicting key rates in nearly real time has been proposed previously. Here, we go further and show a neural network model combined with Bayesian optimization. This model automatically designs the best architecture of neural network computing key rates in real time. We demonstrate our model with two variants of CV QKD protocols with quaternary modulation. The results show high reliability with secure probability as high as $99.15\%-99.59\%$, considerable tightness and high efficiency with speedup of approximately $10^7$ in both cases. This inspiring model enables the real-time computation of unstructured quantum key distribution protocols' key rate more automatically and efficiently, which has met the growing needs of implementing QKD protocols on moving platforms. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:588:" <a href="http://arxiv.org/find/quant-ph/1/au:+Liu_Z/0/1/0/all/0/1">Zhi-Ping Liu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Zhou_M/0/1/0/all/0/1">Min-Gang Zhou</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Liu_W/0/1/0/all/0/1">Wen-Bo Liu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Li_C/0/1/0/all/0/1">Chen-Long Li</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Gu_J/0/1/0/all/0/1">Jie Gu</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yin_H/0/1/0/all/0/1">Hua-Lei Yin</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Chen_Z/0/1/0/all/0/1">Zeng-Bing Chen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:364;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.11329";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:118:"Quantum algorithm for dense and full-rank kernels using hierarchical matrices. (arXiv:2201.11329v2 [quant-ph] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.11329";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1189:"<p>Kernel matrices, which arise from discretizing a kernel function $k(x,x')$, have a variety of applications in mathematics and engineering. Classically, the celebrated fast multipole method was designed to perform matrix multiplication on kernel matrices of dimension $N$ in time almost linear in $N$ by using techniques later generalized into the linear algebraic framework of hierarchical matrices. In light of this success, we propose a quantum algorithm for efficiently performing matrix operations on hierarchical matrices by implementing a quantum block-encoding of the hierarchical matrix structure. When applied to many physical kernel matrices, our quantum algorithm can solve quantum linear systems of dimension $N$ in time $O(\kappa \operatorname{polylog}(\frac{N}{\varepsilon}))$, where $\kappa$ and $\varepsilon$ are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of $N$, exponentially improves over prior quantum linear systems algorithms for dense and full-rank kernel matrices. We discuss possible applications of our algorithm in solving integral equations and accelerating computations in N-body problems. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:264:" <a href="http://arxiv.org/find/quant-ph/1/au:+Nguyen_Q/0/1/0/all/0/1">Quynh T. Nguyen</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Kiani_B/0/1/0/all/0/1">Bobak T. Kiani</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Lloyd_S/0/1/0/all/0/1">Seth Lloyd</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:365;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.11410";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge Intelligence. (arXiv:2201.11410v4 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.11410";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1288:"<p>Mobile edge computing (MEC) is considered a novel paradigm for computation-intensive and delay-sensitive tasks in fifth generation (5G) networks and beyond. However, its uncertainty, referred to as dynamic and randomness, from the mobile device, wireless channel, and edge network sides, results in high-dimensional, nonconvex, nonlinear, and NP-hard optimization problems. Thanks to the evolved reinforcement learning (RL), upon iteratively interacting with the dynamic and random environment, its trained agent can intelligently obtain the optimal policy in MEC. Furthermore, its evolved versions, such as deep RL (DRL), can achieve higher convergence speed efficiency and learning accuracy based on the parametric approximation for the large-scale state-action space. This paper provides a comprehensive research review on RL-enabled MEC and offers insight for development in this area. More importantly, associated with free mobility, dynamic channels, and distributed services, the MEC challenges that can be solved by different kinds of RL algorithms are identified, followed by how they can be solved by RL solutions in diverse mobile applications. Finally, the open challenges are discussed to provide helpful guidance for future research in RL training and learning MEC. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:603:" <a href="http://arxiv.org/find/cs/1/au:+Wei_P/0/1/0/all/0/1">Peng Wei</a>, <a href="http://arxiv.org/find/cs/1/au:+Guo_K/0/1/0/all/0/1">Kun Guo</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Ye Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">Jue Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Feng_W/0/1/0/all/0/1">Wei Feng</a>, <a href="http://arxiv.org/find/cs/1/au:+Jin_S/0/1/0/all/0/1">Shi Jin</a>, <a href="http://arxiv.org/find/cs/1/au:+Ge_N/0/1/0/all/0/1">Ning Ge</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_Y/0/1/0/all/0/1">Ying-Chang Liang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:366;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.11965";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:148:"Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints. (arXiv:2201.11965v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.11965";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1306:"<p>We consider primal-dual-based reinforcement learning (RL) in episodic constrained Markov decision processes (CMDPs) with non-stationary objectives and constraints, which play a central role in ensuring the safety of RL in time-varying environments. In this problem, the reward/utility functions and the state transition functions are both allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain known variation budgets. Designing safe RL algorithms in time-varying environments is particularly challenging because of the need to integrate the constraint violation reduction, safe exploration, and adaptation to the non-stationarity. To this end, we propose a Periodically Restarted Optimistic Primal-Dual Proximal Policy Optimization (PROPD-PPO) algorithm that features three mechanisms: periodic-restart-based policy improvement, dual update with dual regularization, and periodic-restart-based optimistic policy evaluation. We establish a dynamic regret bound and a constraint violation bound for the proposed algorithm in both the linear kernel CMDP function approximation setting and the tabular CMDP setting under two alternative assumptions. This paper provides the first provably efficient algorithm for non-stationary CMDPs with safe exploration. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:159:" <a href="http://arxiv.org/find/cs/1/au:+Ding_Y/0/1/0/all/0/1">Yuhao Ding</a>, <a href="http://arxiv.org/find/cs/1/au:+Lavaei_J/0/1/0/all/0/1">Javad Lavaei</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:367;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.11968";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"Training invariances and the low-rank phenomenon: beyond linear networks. (arXiv:2201.11968v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.11968";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1115:"<p>The implicit bias induced by the training of neural networks has become a topic of rigorous study. In the limit of gradient flow and gradient descent with appropriate step size, it has been shown that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-1 matrices. In this paper, we extend this theoretical result to the last few linear layers of the much wider class of nonlinear ReLU-activated feedforward networks containing fully-connected layers and skip connections. Similar to the linear case, the proof relies on specific local training invariances, sometimes referred to as alignment, which we show to hold for submatrices where neurons are stably-activated in all training examples, and it reflects empirical results in the literature. We also show this is not true in general for the full matrix of ReLU fully-connected layers. Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:160:" <a href="http://arxiv.org/find/cs/1/au:+Le_T/0/1/0/all/0/1">Thien Le</a>, <a href="http://arxiv.org/find/cs/1/au:+Jegelka_S/0/1/0/all/0/1">Stefanie Jegelka</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:368;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2201.12409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:115:"A Unified Approach to Entity-Centric Context Tracking in Social Conversations. (arXiv:2201.12409v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2201.12409";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1219:"<p>In human-human conversations, Context Tracking deals with identifying important entities and keeping track of their properties and relationships. This is a challenging problem that encompasses several subtasks such as slot tagging, coreference resolution, resolving plural mentions and entity linking. We approach this problem as an end-to-end modeling task where the conversational context is represented by an entity repository containing the entity references mentioned so far, their properties and the relationships between them. The repository is updated turn-by-turn, thus making training and inference computationally efficient even for long conversations. This paper lays the groundwork for an investigation of this framework in two ways. First, we release Contrack, a large scale human-human conversation corpus for context tracking with people and location annotations. It contains over 7000 conversations with an average of 11.8 turns, 5.8 entities and 15.2 references per conversation. Second, we open-source a neural network architecture for context tracking. Finally we compare this network to state-of-the-art approaches for the subtasks it subsumes and report results on the involved tradeoffs. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:433:" <a href="http://arxiv.org/find/cs/1/au:+Ruckert_U/0/1/0/all/0/1">Ulrich Rückert</a>, <a href="http://arxiv.org/find/cs/1/au:+Sunkara_S/0/1/0/all/0/1">Srinivas Sunkara</a>, <a href="http://arxiv.org/find/cs/1/au:+Rastogi_A/0/1/0/all/0/1">Abhinav Rastogi</a>, <a href="http://arxiv.org/find/cs/1/au:+Prakash_S/0/1/0/all/0/1">Sushant Prakash</a>, <a href="http://arxiv.org/find/cs/1/au:+Khaitan_P/0/1/0/all/0/1">Pranav Khaitan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:369;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.06594";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:126:"A formal algebraic approach for the quantitative modeling of connectors in architectures. (arXiv:2202.06594v3 [cs.LO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.06594";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:962:"<p>In this paper we propose an algebraic formalization of connectors in the quantitative setting in order to address the performance issues related with the architectures of component-based systems. For this, we firstly introduce a weighted Algebra of Interactions over a set of ports and a commutative and idempotent semiring. The algebra serves sufficiently for modeling well-known coordination schemes in the weighted setup. In turn, we introduce and study a weighted Algebra of Connectors over a set of ports and a commutative and idempotent semiring, which extends the weighted Algebra of Interactions with types that express two different modes of synchronization, in particular, Rendezvous and Broadcast. Moreover, we show the expressiveness of the algebra by modeling several weighted connectors. Finally, we introduce a congruence relation for weighted connectors and provide conditions for proving congruence between distinct weighted connectors. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:193:" <a href="http://arxiv.org/find/cs/1/au:+Fountoukidou_C/0/1/0/all/0/1">Christina Chrysovalanti Fountoukidou</a>, <a href="http://arxiv.org/find/cs/1/au:+Pittou_M/0/1/0/all/0/1">Maria Pittou</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:370;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.09008";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:80:"On Variance Estimation of Random Forests. (arXiv:2202.09008v2 [stat.ML] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.09008";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1163:"<p>Ensemble methods, such as random forests, are popular in applications due to their high predictive accuracy. Existing literature views a random forest prediction as an infinite-order incomplete U-statistic to quantify its uncertainty. However, these methods focus on a small subsampling size of each tree, which is theoretically valid but practically limited. This paper develops an unbiased variance estimator based on incomplete U-statistics, which allows the tree size to be comparable with the overall sample size, making statistical inference possible in a broader range of real applications. Simulation results demonstrate that our estimators enjoy lower bias and a more accurate coverage rate without additional computational costs. We also propose a local smoothing procedure to reduce the variation of our estimator, which shows improved numerical performance when the number of trees is relatively small. Further, we investigate the ratio consistency of our proposed variance estimator under specific scenarios. In particular, we develop a new "double U-statistic" formulation to analyze the Hoeffding decomposition of the estimator's variance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:241:" <a href="http://arxiv.org/find/stat/1/au:+Xu_T/0/1/0/all/0/1">Tianning Xu</a>, <a href="http://arxiv.org/find/stat/1/au:+Zhu_R/0/1/0/all/0/1">Ruoqing Zhu</a>, <a href="http://arxiv.org/find/stat/1/au:+Shao_X/0/1/0/all/0/1">Xiaofeng Shao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:371;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.09028";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:104:"On the Implicit Bias Towards Minimal Depth of Deep Neural Networks. (arXiv:2202.09028v6 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.09028";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1057:"<p>We study the implicit bias of stochastic gradient descent to favor low-depth solutions when training deep neural networks. Recent results in the literature suggest that penultimate layer representations learned by a classifier over multiple classes exhibit a clustering property, called neural collapse. First, we empirically show that neural collapse generally strengthens when increasing the number of layers. In addition, we demonstrate that neural collapse extends beyond the penultimate layer and emerges in intermediate layers as well, making the higher layers essentially redundant. We characterize a notion of effective depth which measures the minimal layer that enjoys neural collapse. In this regard, we hypothesize and empirically show that gradient descent implicitly selects neural networks of small effective depths. Finally, we theoretically and empirically show that the effective depth of a trained neural network monotonically increases when training with extended portions of random labels and connecting it with generalization. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:167:" <a href="http://arxiv.org/find/cs/1/au:+Galanti_T/0/1/0/all/0/1">Tomer Galanti</a>, <a href="http://arxiv.org/find/cs/1/au:+Galanti_L/0/1/0/all/0/1">Liane Galanti</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:372;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.09637";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:121:"Decision Problems in a Logic for Reasoning about Reconfigurable Distributed Systems. (arXiv:2202.09637v2 [cs.LO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.09637";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:788:"<p>We consider a logic used to describe sets of configurations of distributed systems, whose network topologies can be changed at runtime, by reconfiguration programs. The logic uses inductive definitions to describe networks with an unbounded number of components and interactions, written using a multiplicative conjunction, reminiscent of Bunched Implications and Separation Logic. We study the complexity of the satisfiability and entailment problems for the configuration logic under consideration. Additionally, we consider robustness properties, such as tightness (are all interactions entirely connected to components?) and degree boundedness (is every component involved in a bounded number of interactions?), the latter being an ingredient for decidability of entailments. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:239:" <a href="http://arxiv.org/find/cs/1/au:+Bozga_M/0/1/0/all/0/1">Marius Bozga</a>, <a href="http://arxiv.org/find/cs/1/au:+Bueri_L/0/1/0/all/0/1">Lucas Bueri</a>, <a href="http://arxiv.org/find/cs/1/au:+Iosif_R/0/1/0/all/0/1">Radu Iosif</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:373;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.09971";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"Deep Feature based Cross-slide Registration. (arXiv:2202.09971v5 [eess.IV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.09971";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1704:"<p>Cross-slide image analysis provides additional information by analysing the expression of different biomarkers as compared to a single slide analysis. These biomarker stained slides are analysed side by side, revealing unknown relations between them. During the slide preparation, a tissue section may be placed at an arbitrary orientation as compared to other sections of the same tissue block. The problem is compounded by the fact that tissue contents are likely to change from one section to the next and there may be unique artefacts on some of the slides. This makes registration of each section to a reference section of the same tissue block an important pre-requisite task before any cross-slide analysis. We propose a deep feature based registration (DFBR) method which utilises data-driven features to estimate the rigid transformation. We adopted a multi-stage strategy for improving the quality of registration. We also developed a visualisation tool to view registered pairs of WSIs at different magnifications. With the help of this tool, one can apply a transformation on the fly without the need to generate transformed source WSI in a pyramidal form. We compared the performance of data-driven features with that of hand-crafted features on the COMET dataset. Our approach can align the images with low registration errors. Generally, the success of non-rigid registration is dependent on the quality of rigid registration. To evaluate the efficacy of the DFBR method, the first two steps of the ANHIR winner's framework are replaced with our DFBR to register challenge provided image pairs. The modified framework produces comparable results to that of challenge winning team. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:418:" <a href="http://arxiv.org/find/eess/1/au:+Awan_R/0/1/0/all/0/1">Ruqayya Awan</a>, <a href="http://arxiv.org/find/eess/1/au:+Raza_S/0/1/0/all/0/1">Shan E Ahmed Raza</a>, <a href="http://arxiv.org/find/eess/1/au:+Lotz_J/0/1/0/all/0/1">Johannes Lotz</a>, <a href="http://arxiv.org/find/eess/1/au:+Weiss_N/0/1/0/all/0/1">Nick Weiss</a>, <a href="http://arxiv.org/find/eess/1/au:+Rajpoot_N/0/1/0/all/0/1">Nasir Rajpoot</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:374;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.11149";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:149:"Incorporating social norms into a configurable agent-based model of the decision to perform commuting behaviour. (arXiv:2202.11149v2 [cs.MA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.11149";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1942:"<p>Introduction: Active commuting has been recommended as a method to increase population physical activity, but evidence is mixed. Social norms related to travel behaviour may influence the uptake of active commuting interventions but are rarely considered in the design and evaluation of interventions. </p> <p>Methods: We developed an agent-based model that incorporates social norms related to travel behaviour and demonstrate the utility of this through implementing car-free Wednesdays. A synthetic population of Waltham Forest, London, UK was generated using a microsimulation approach with data from the UK Census 2011 and UK HLS datasets. An agent-based model was created using this synthetic population which modelled how the actions of peers and neighbours, subculture, habit, weather, bicycle ownership, car ownership, environmental supportiveness, and congestion affect the decision to travel between four modes: walking, cycling, driving, and taking public transport. </p> <p>Results: In the control scenario, the odds of active travel were plausible at 0.091 (89% HPDI: [0.091, 0.091]). Compared to the control scenario, the odds of active travel were increased by 70.3% (89% HPDI: [70.3%, 70.3%]), in the intervention scenario, on non-car-free days; the effect of the intervention is sustained to non-car-free days. </p> <p>Discussion: While these results demonstrate the utility of our agent-based model, rather than aim to make accurate predictions, they do suggest that by there being a 'nudge' of car-free days, there may be a sustained change in active commuting behaviour. The model is a useful tool for investigating the effect of how social networks and social norms influence the effectiveness of various interventions. If configured using real-world built environment data, it may be useful for investigating how social norms interact with the built environment to cause the emergence of commuting conventions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:410:" <a href="http://arxiv.org/find/cs/1/au:+Greener_R/0/1/0/all/0/1">Robert Greener</a>, <a href="http://arxiv.org/find/cs/1/au:+Lewis_D/0/1/0/all/0/1">Daniel Lewis</a>, <a href="http://arxiv.org/find/cs/1/au:+Reades_J/0/1/0/all/0/1">Jon Reades</a>, <a href="http://arxiv.org/find/cs/1/au:+Miles_S/0/1/0/all/0/1">Simon Miles</a>, <a href="http://arxiv.org/find/cs/1/au:+Cummins_S/0/1/0/all/0/1">Steven Cummins</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:375;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.11902";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:83:"A PTAS for Packing Hypercubes into a Knapsack. (arXiv:2202.11902v2 [cs.DS] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.11902";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1447:"<p>We study the d-dimensional hypercube knapsack problem where we are given a set of d-dimensional hypercubes with associated profits, and a knapsack which is a unit d-dimensional hypercube. The goal is to find an axis-aligned non-overlapping packing of a subset of hypercubes such that the profit of the packed hypercubes is maximized. For this problem, Harren (ICALP'06) gave an algorithm with an approximation ratio of (1+1/2^d+epsilon). For d=2, Jansen and Solis-Oba (IPCO'08) showed that the problem admits a polynomial-time approximation scheme (PTAS); Heydrich and Wiese (SODA'17) further improved the running time and gave an efficient polynomial-time approximation scheme (EPTAS). Both the results use structural properties of 2-D packing, which do not generalize to higher dimensions. For d>2, it remains open to obtain a PTAS, and in fact, there has been no improvement since Harren's result. </p> <p>We settle the problem by providing a PTAS. Our main technical contribution is a structural lemma which shows that any packing of hypercubes can be converted into another structured packing such that a high profitable subset of hypercubes is packed into a constant number of special hypercuboids, called V-Boxes and N-Boxes. As a side result, we give an almost optimal algorithm for a variant of the strip packing problem in higher dimensions. This might have applications for other multidimensional geometric packing problems. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:331:" <a href="http://arxiv.org/find/cs/1/au:+Jansen_K/0/1/0/all/0/1">Klaus Jansen</a>, <a href="http://arxiv.org/find/cs/1/au:+Khan_A/0/1/0/all/0/1">Arindam Khan</a>, <a href="http://arxiv.org/find/cs/1/au:+Lira_M/0/1/0/all/0/1">Marvin Lira</a>, <a href="http://arxiv.org/find/cs/1/au:+Sreenivas_K/0/1/0/all/0/1">K. V. N. Sreenivas</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:376;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.13898";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"DistAD: Software Anomaly Detection Based on Execution Trace Distribution. (arXiv:2202.13898v2 [cs.SE] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.13898";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1647:"<p>Modern software systems have become increasingly complex, which makes them difficult to test and validate. Detecting software partial anomalies in complex systems at runtime can assist with handling unintended software behaviors, avoiding catastrophic software failures and improving software runtime availability. These detection techniques aim to identify the manifestation of faults (anomalies) before they ultimately lead to unavoidable failures, thus, supporting the following runtime fault-tolerant techniques. In this work, we propose a novel anomaly detection method named DistAD, which is based on the distribution of software runtime dynamic execution traces. Unlike other existing works using key performance indicators, the execution trace is collected during runtime via intrusive instrumentation. Instrumentation are controlled following a sampling mechanism to avoid excessive overheads. Bi-directional Long Short-Term Memory (Bi-LSTM), an architecture of Recurrent Neural Network (RNN) is used to achieve the anomaly detection. The whole framework is constructed under a One-Class Neural Network (OCNN) learning mode which can help eliminate the limits of lacking for enough labeled samples and the data imbalance issues. A series of controlled experiments are conducted on a widely used database system named Cassandra to prove the validity and feasibility of the proposed method. Overheads brought about by the intrusive probing are also evaluated. The results show that DistAD can achieve more than 70% accuracy and 90% recall (in normal states) with no more than 2 times overheads compared with unmonitored executions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:385:" <a href="http://arxiv.org/find/cs/1/au:+Kong_S/0/1/0/all/0/1">Shiyi Kong</a>, <a href="http://arxiv.org/find/cs/1/au:+Ai_J/0/1/0/all/0/1">Jun Ai</a>, <a href="http://arxiv.org/find/cs/1/au:+Lu_M/0/1/0/all/0/1">Minyan Lu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_S/0/1/0/all/0/1">Shuguang Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wong_W/0/1/0/all/0/1">W. Eric Wong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:377;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.00449";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Deep Learning based Prediction of MSI using MMR Markers in Colorectal Cancer. (arXiv:2203.00449v3 [q-bio.QM] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.00449";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1728:"<p>The accurate diagnosis and molecular profiling of colorectal cancers are critical for planning the best treatment options for patients. Microsatellite instability (MSI) or mismatch repair (MMR) status plays a vital role in appropriate treatment selection, has prognostic implications and is used to investigate the possibility of patients having underlying genetic disorders (Lynch syndrome). NICE recommends that all CRC patients should be offered MMR/MSI testing. Immunohistochemistry is commonly used to assess MMR status with subsequent molecular testing performed as required. This incurs significant extra costs and requires additional resources. The introduction of automated methods that can predict MSI or MMR status from a target image could substantially reduce the cost associated with MMR testing. Unlike previous studies on MSI prediction involving training a CNN using coarse labels (MSI vs Microsatellite Stable (MSS)), we have utilised fine-grain MMR labels for training purposes. In this paper, we present our work on predicting MSI status in a two-stage process using a single target slide either stained with CK8/18 or H&E. First, we trained a multi-headed convolutional neural network model where each head was responsible for predicting one of the MMR protein expressions. To this end, we performed the registration of MMR stained slides to the target slide as a pre-processing step. In the second stage, statistical features computed from the MMR prediction maps were used for the final MSI prediction. Our results demonstrated that MSI classification can be improved by incorporating fine-grained MMR labels in comparison to the previous approaches in which only coarse labels were utilised. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:684:" <a href="http://arxiv.org/find/q-bio/1/au:+Awan_R/0/1/0/all/0/1">Ruqayya Awan</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Nimir_M/0/1/0/all/0/1">Mohammed Nimir</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Raza_S/0/1/0/all/0/1">Shan E Ahmed Raza</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Bilal_M/0/1/0/all/0/1">Mohsin Bilal</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Lotz_J/0/1/0/all/0/1">Johannes Lotz</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Snead_D/0/1/0/all/0/1">David Snead</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Robinson_A/0/1/0/all/0/1">Andrew Robinson</a>, <a href="http://arxiv.org/find/q-bio/1/au:+Rajpoot_N/0/1/0/all/0/1">Nasir Rajpoot</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:378;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.01360";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations. (arXiv:2203.01360v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.01360";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1591:"<p>Deep neural networks have been shown to provide accurate function approximations in high dimensions. However, fitting network parameters requires training data that may not be available beforehand, which is particularly challenging in science and engineering applications where often it is even unclear how to collect new informative training data in the first place. This work proposes Neural Galerkin schemes based on deep learning that generate training data samples with active learning for numerically solving high-dimensional partial differential equations. Neural Galerkin schemes train networks by minimizing the residual sequentially over time, which enables adaptively collecting new training data in a self-informed manner that is guided by the dynamics described by the partial differential equations, which is in stark contrast to many other machine learning methods that aim to fit network parameters globally in time without taking into account training data acquisition. Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions. Numerical experiments demonstrate that Neural Galerkin schemes have the potential to enable simulating phenomena and processes with many variables for which traditional and other deep-learning-based solvers fail, especially when features of the solutions evolve locally such as in high-dimensional wave propagation problems and interacting particle systems described by Fokker-Planck and kinetic equations. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:278:" <a href="http://arxiv.org/find/math/1/au:+Bruna_J/0/1/0/all/0/1">Joan Bruna</a>, <a href="http://arxiv.org/find/math/1/au:+Peherstorfer_B/0/1/0/all/0/1">Benjamin Peherstorfer</a>, <a href="http://arxiv.org/find/math/1/au:+Vanden_Eijnden_E/0/1/0/all/0/1">Eric Vanden-Eijnden</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:379;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.02077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"User-Level Membership Inference Attack against Metric Embedding Learning. (arXiv:2203.02077v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.02077";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:946:"<p>Membership inference (MI) determines if a sample was part of a victim model training set. Recent development of MI attacks focus on record-level membership inference which limits their application in many real-world scenarios. For example, in the person re-identification task, the attacker (or investigator) is interested in determining if a user's images have been used during training or not. However, the exact training images might not be accessible to the attacker. In this paper, we develop a user-level MI attack where the goal is to find if any sample from the target user has been used during training even when no exact training sample is available to the attacker. We focus on metric embedding learning due to its dominance in person re-identification, where user-level MI attack is more sensible. We conduct an extensive evaluation on several datasets and show that our approach achieves high accuracy on user-level MI task. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:232:" <a href="http://arxiv.org/find/cs/1/au:+Li_G/0/1/0/all/0/1">Guoyao Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Rezaei_S/0/1/0/all/0/1">Shahbaz Rezaei</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xin Liu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:380;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.03634";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:114:"BPM-Net: non-contact blood pressure measuring network based on face videos. (arXiv:2203.03634v2 [eess.IV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.03634";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1309:"<p>Blood pressure indicates cardiac function and peripheral vascular resistance and is critical for disease diagnosis. Traditionally, blood pressure data are mainly acquired through contact sensors, which require high maintenance and may be inconvenient and unfriendly to some people (e.g., burn patients). In this paper, we proposed an efficient non-contact blood pressure measurement network based on face videos. First, an innovative oversampling training strategy is proposed to handle the unbalanced data distribution. The input video sequences are first normalized and converted to our proposed YUVT color space. Then the spatio-temporal slicer encodes it into a multi-domain spatio-temporal mapping. Finally, the feature extractor composed of a series backbone network and LSTM fits the high-dimensional feature, which is fed into blood pressure classifier to locates the blood pressure interval. The blood pressure calculator combines the results of the feature extractor and the blood pressure classifier to output the final blood pressure value. We tested BPM-Net on MMSE-HR dataset, the MAE of systolic blood pressure reached 12.35 mmHg and that of diastolic blood pressure reached 9.5 mmHg. Experimental results on MMSE-HR show that the network outperforms existing state-of-the-art methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:324:" <a href="http://arxiv.org/find/eess/1/au:+Zhuang_J/0/1/0/all/0/1">Jialiang Zhuang</a>, <a href="http://arxiv.org/find/eess/1/au:+Li_B/0/1/0/all/0/1">Bin Li</a>, <a href="http://arxiv.org/find/eess/1/au:+Zhang_Y/0/1/0/all/0/1">Yun Zhang</a>, <a href="http://arxiv.org/find/eess/1/au:+Zheng_X/0/1/0/all/0/1">Xiujuan Zheng</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:381;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.04180";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:154:"Tuning-free multi-coil compressed sensing MRI with Parallel Variable Density Approximate Message Passing (P-VDAMP). (arXiv:2203.04180v2 [math.NA] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.04180";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1658:"<p>Magnetic Resonance Imaging (MRI) has excellent soft tissue contrast but is hindered by an inherently slow data acquisition process. Compressed sensing, which reconstructs sparse signals from incoherently sampled data, has been widely applied to accelerate MRI acquisitions. Compressed sensing MRI requires one or more model parameters to be tuned, which is usually done by hand, giving sub-optimal tuning in general. To address this issue, we build on previous work by the authors on the single-coil Variable Density Approximate Message Passing (VDAMP) algorithm, extending the framework to multiple receiver coils to propose the Parallel VDAMP (P-VDAMP) algorithm. For Bernoulli random variable density sampling, P-VDAMP obeys a "state evolution", where the intermediate per-iteration image estimate is distributed according to the ground truth corrupted by a zero-mean Gaussian vector with approximately known covariance. To our knowledge, P-VDAMP is the first algorithm for multi-coil MRI data that obeys a state evolution with accurately tracked parameters. We leverage state evolution to automatically tune sparse parameters on-the-fly with Stein's Unbiased Risk Estimate (SURE). P-VDAMP is evaluated on brain, knee and angiogram datasets and compared with four variants of the Fast Iterative Shrinkage-Thresholding algorithm (FISTA), including two tuning-free variants from the literature. The proposed method is found to have a similar reconstruction quality and time to convergence as FISTA with an optimally tuned sparse weighting and offers substantial robustness and reconstruction quality improvements over competing tuning-free methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:419:" <a href="http://arxiv.org/find/math/1/au:+Millard_C/0/1/0/all/0/1">Charles Millard</a>, <a href="http://arxiv.org/find/math/1/au:+Chiew_M/0/1/0/all/0/1">Mark Chiew</a>, <a href="http://arxiv.org/find/math/1/au:+Tanner_J/0/1/0/all/0/1">Jared Tanner</a>, <a href="http://arxiv.org/find/math/1/au:+Hess_A/0/1/0/all/0/1">Aaron T. Hess</a>, <a href="http://arxiv.org/find/math/1/au:+Mailhe_B/0/1/0/all/0/1">Boris Mailhe</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:382;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.05400";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:126:"Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation. (arXiv:2203.05400v2 [math.ST] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.05400";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:968:"<p>It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Mat\'ern covariance kernel. The smoothness parameter of a Mat\'ern kernel determines many important properties of the model in the large data limit, such as the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood and cross-validation estimates of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of $\mathbb{R}^d$. That is, if the data-generating response function has Sobolev smoothness $\nu_0 + d/2$, then the smoothness parameter estimates cannot remain below $\nu_0$ as more data are obtained. The results are based on approximation theory in Sobolev spaces and a general theorem, proved using reproducing kernel Hilbert space techniques, about sets of values the parameter estimates cannot take. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:86:" <a href="http://arxiv.org/find/math/1/au:+Karvonen_T/0/1/0/all/0/1">Toni Karvonen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:383;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.08073";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:84:"Can A Neural Network Hear the Shape of A Drum?. (arXiv:2203.08073v2 [cs.SD] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.08073";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:757:"<p>We have developed a deep neural network that reconstructs the shape of a polygonal domain given the first hundred of its Laplacian eigenvalues. Having an encoder-decoder structure, the network maps input spectra to a latent space and then predicts the discretized image of the domain on a square grid. We tested this network on randomly generated pentagons. The prediction accuracy is high and the predictions obey the Laplacian scaling rule. The network recovers the continuous rotational degree of freedom beyond the symmetry of the grid. The variation of the latent variables under the scaling transformation shows they are strongly correlated with Weyl' s parameters (area, perimeter, and a certain function of the angles) of the test polygons. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:164:" <a href="http://arxiv.org/find/cs/1/au:+Zhao_Y/0/1/0/all/0/1">Yueqi Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Fogler_M/0/1/0/all/0/1">Michael M. Fogler</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:384;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.10077";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:122:"Tight Vector Bin Packing with Few Small Items via Fast Exact Matching in Multigraphs. (arXiv:2203.10077v2 [cs.DS] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.10077";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1265:"<p>We solve the Bin Packing problem in $O^*(2^k)$ time, where $k$ is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. Our algorithm is actually designed to work for a more general Vector Bin Packing problem, in which items are multidimensional vectors. We improve over the previous fastest $O^*(k! \cdot 4^k)$ time algorithm. </p> <p>Our algorithm works by reducing the problem to finding an exact weight perfect matching in a (multi-)graph with $O^*(2^k)$ edges, whose weights are integers of the order of $O^*(2^k)$. To solve the matching problem in the desired time, we give a variant of the classic Mulmuley-Vazirani-Vazirani algorithm with only a linear dependence on the edge weights and the number of edges, which may be of independent interest. </p> <p>Moreover, we give a tight lower bound, under the Strong Exponential Time Hypothesis (SETH), showing that the constant $2$ in the base of the exponent cannot be further improved for Vector Bin Packing. </p> <p>Our techniques also lead to improved algorithms for Vector Multiple Knapsack, Vector Bin Covering, and Perfect Matching with Hitting Constraints. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:269:" <a href="http://arxiv.org/find/cs/1/au:+Lassota_A/0/1/0/all/0/1">Alexandra Lassota</a>, <a href="http://arxiv.org/find/cs/1/au:+Lukasiewicz_A/0/1/0/all/0/1">Aleksander Łukasiewicz</a>, <a href="http://arxiv.org/find/cs/1/au:+Polak_A/0/1/0/all/0/1">Adam Polak</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:385;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.10992";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:109:"Spoofing-Aware Speaker Verification with Unsupervised Domain Adaptation. (arXiv:2203.10992v2 [cs.SD] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.10992";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:967:"<p>In this paper, we initiate the concern of enhancing the spoofing robustness of the automatic speaker verification (ASV) system, without the primary presence of a separate countermeasure module. We start from the standard ASV framework of the ASVspoof 2019 baseline and approach the problem from the back-end classifier based on probabilistic linear discriminant analysis. We employ three unsupervised domain adaptation techniques to optimize the back-end using the audio data in the training partition of the ASVspoof 2019 dataset. We demonstrate notable improvements on both logical and physical access scenarios, especially on the latter where the system is attacked by replayed audios, with a maximum of 36.1% and 5.3% relative improvement on bonafide and spoofed cases, respectively. We perform additional studies such as per-attack breakdown analysis, data composition, and integration with a countermeasure system at score-level with Gaussian back-end. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:249:" <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xuechen Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Sahidullah_M/0/1/0/all/0/1">Md Sahidullah</a>, <a href="http://arxiv.org/find/cs/1/au:+Kinnunen_T/0/1/0/all/0/1">Tomi Kinnunen</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:386;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.13209";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:72:"Direct parsing to sentiment graphs. (arXiv:2203.13209v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.13209";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:298:"<p>This paper demonstrates how a graph-based semantic parser can be applied to the task of structured sentiment analysis, directly predicting sentiment graphs from text. We advance the state of the art on 4 out of 5 standard benchmark sets. We release the source code, models and predictions. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:498:" <a href="http://arxiv.org/find/cs/1/au:+Samuel_D/0/1/0/all/0/1">David Samuel</a>, <a href="http://arxiv.org/find/cs/1/au:+Barnes_J/0/1/0/all/0/1">Jeremy Barnes</a>, <a href="http://arxiv.org/find/cs/1/au:+Kurtz_R/0/1/0/all/0/1">Robin Kurtz</a>, <a href="http://arxiv.org/find/cs/1/au:+Oepen_S/0/1/0/all/0/1">Stephan Oepen</a>, <a href="http://arxiv.org/find/cs/1/au:+Ovrelid_L/0/1/0/all/0/1">Lilja Øvrelid</a>, <a href="http://arxiv.org/find/cs/1/au:+Velldal_E/0/1/0/all/0/1">Erik Velldal</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:387;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.13250";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:66:"Global Tracking Transformers. (arXiv:2203.13250v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.13250";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1180:"<p>We present a novel transformer-based architecture for global multi-object tracking. Our network takes a short sequence of frames as input and produces global trajectories for all objects. The core component is a global tracking transformer that operates on objects from all frames in the sequence. The transformer encodes object features from all frames, and uses trajectory queries to group them into trajectories. The trajectory queries are object features from a single frame and naturally produce unique trajectories. Our global tracking transformer does not require intermediate pairwise grouping or combinatorial association, and can be jointly trained with an object detector. It achieves competitive performance on the popular MOT17 benchmark, with 75.3 MOTA and 59.1 HOTA. More importantly, our framework seamlessly integrates into state-of-the-art large-vocabulary detectors to track any objects. Experiments on the challenging TAO dataset show that our framework consistently improves upon baselines that are based on pairwise association, outperforming published works by a significant 7.7 tracking mAP. Code is available at https://github.com/xingyizhou/GTR. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:342:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_X/0/1/0/all/0/1">Xingyi Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Yin_T/0/1/0/all/0/1">Tianwei Yin</a>, <a href="http://arxiv.org/find/cs/1/au:+Koltun_V/0/1/0/all/0/1">Vladlen Koltun</a>, <a href="http://arxiv.org/find/cs/1/au:+Krahenbuhl_P/0/1/0/all/0/1">Philipp Krähenbühl</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:388;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.14003";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:135:"Optical Wireless Transmissions over Multi-layer Underwater Channels with Generalized Gamma Fading. (arXiv:2203.14003v2 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.14003";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1395:"<p>Underwater optical communication (UWOC) is a potential solution for broadband connectivity in oceans and seas for underwater applications providing high data rate transmission with low latency and high reliability. Recent measurement campaigns suggest generalized Gamma distribution as a viable model for oceanic turbulence. In this paper, we analyze the performance of a UWOC system by modeling the vertical underwater link as a multi-layer cascaded channel, each distributed according to independent but not identically distributed (i.ni.d.) generalized Gamma random variables and considering the zero bore-sight model for pointing errors. We derive analytical expressions for probability density function (PDF) and cumulative distribution function (CDF) for the signal-to-noise ratios (SNR) of the combined channel and develop performance metrics of the considered UWOC system using outage probability, average bit error rate (BER), and ergodic capacity. We also derive the asymptotic expressions for outage probability and average BER to determine the diversity order of the proposed system for a better insight into the system performance. We use Monte-Carlo simulation results to validate our exact and asymptotic expressions and demonstrate the performance of the considered underwater UWOC system using measurement-based parametric data available for turbulent oceanic channels. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:249:" <a href="http://arxiv.org/find/cs/1/au:+Das_S/0/1/0/all/0/1">Suhrid Das</a>, <a href="http://arxiv.org/find/cs/1/au:+Rahman_Z/0/1/0/all/0/1">Ziyaur Rahman</a>, <a href="http://arxiv.org/find/cs/1/au:+Zafaruddin_S/0/1/0/all/0/1">S. M. Zafaruddin</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:389;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2203.16401";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Recognition of polar lows in Sentinel-1 SAR images with deep learning. (arXiv:2203.16401v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2203.16401";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1474:"<p>In this paper, we explore the possibility of detecting polar lows in C-band SAR images by means of deep learning. Specifically, we introduce a novel dataset consisting of Sentinel-1 images labeled as positive; representing a maritime mesocyclone, or negative; representing a normal sea state. The dataset is constructed using the ERA5 dataset as baseline and it consists of 2004 annotated images. To our knowledge, this is the first dataset of its kind to be publicly released. The dataset is used to train a deep learning model to classify the labeled images. Evaluated on an independent test set, the model yields an F-1 score of 0.95, indicating that polar lows can be consistently detected from SAR images. Interpretability techniques applied to the deep learning model reveal that atmospheric fronts and cyclonic eyes are key features in the classification. Moreover, experimental results show that the model is accurate even if: (i) such features are significantly cropped due to the limited swath width of the SAR, (ii) the features are partly covered by sea ice and (iii) land is covering significant parts of the images. By evaluating the model performance on multiple input image resolutions (pixel sizes of 500m, 1km and 2km), it is found that higher resolution yield the best performance. This emphasises the potential of using high resolution sensors like SAR for detecting polar lows, as compared to conventionally used sensors such as scatterometers. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:171:" <a href="http://arxiv.org/find/cs/1/au:+Grahn_J/0/1/0/all/0/1">Jakob Grahn</a>, <a href="http://arxiv.org/find/cs/1/au:+Bianchi_F/0/1/0/all/0/1">Filippo Maria Bianchi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:390;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.00716";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:140:"CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos. (arXiv:2204.00716v2 [cs.IR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.00716";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1822:"<p>Current dense retrievers are not robust to out-of-domain and outlier queries, i.e. their effectiveness on these queries is much poorer than what one would expect. In this paper, we consider a specific instance of such queries: queries that contain typos. We show that a small character level perturbation in queries (as caused by typos) highly impacts the effectiveness of dense retrievers. We then demonstrate that the root cause of this resides in the input tokenization strategy employed by BERT. In BERT, tokenization is performed using the BERT's WordPiece tokenizer and we show that a token with a typo will significantly change the token distributions obtained after tokenization. This distribution change translates to changes in the input embeddings passed to the BERT-based query encoder of dense retrievers. We then turn our attention to devising dense retriever methods that are robust to such queries with typos, while still being as performant as previous methods on queries without typos. For this, we use CharacterBERT as the backbone encoder and an efficient yet effective training method, called Self-Teaching (ST), that distills knowledge from queries without typos into the queries with typos. Experimental results show that CharacterBERT in combination with ST achieves significantly higher effectiveness on queries with typos compared to previous methods. Along with these results and the open-sourced implementation of the methods, we also provide a new passage retrieval dataset consisting of real-world queries with typos and associated relevance assessments on the MS MARCO corpus, thus supporting the research community in the investigation of effective and robust dense retrievers. Code, experimental results and dataset are made available at https://github.com/ielab/CharacterBERT-DR. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:166:" <a href="http://arxiv.org/find/cs/1/au:+Zhuang_S/0/1/0/all/0/1">Shengyao Zhuang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zuccon_G/0/1/0/all/0/1">Guido Zuccon</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:391;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.01172";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:111:"PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models. (arXiv:2204.01172v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.01172";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1281:"<p>Current methods for few-shot fine-tuning of pretrained masked language models (PLMs) require carefully engineered prompts and verbalizers for each new task to convert examples into a cloze-format that the PLM can score. In this work, we propose PERFECT, a simple and efficient method for few-shot fine-tuning of PLMs without relying on any such handcrafting, which is highly effective given as few as 32 data points. PERFECT makes two key design choices: First, we show that manually engineered task prompts can be replaced with task-specific adapters that enable sample-efficient fine-tuning and reduce memory and storage costs by roughly factors of 5 and 100, respectively. Second, instead of using handcrafted verbalizers, we learn new multi-token label embeddings during fine-tuning, which are not tied to the model vocabulary and which allow us to avoid complex auto-regressive decoding. These embeddings are not only learnable from limited data but also enable nearly 100x faster training and inference. Experiments on a wide range of few-shot NLP tasks demonstrate that PERFECT, while being simple and efficient, also outperforms existing state-of-the-art few-shot learning methods. Our code is publicly available at https://github.com/facebookresearch/perfect.git. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:614:" <a href="http://arxiv.org/find/cs/1/au:+Mahabadi_R/0/1/0/all/0/1">Rabeeh Karimi Mahabadi</a>, <a href="http://arxiv.org/find/cs/1/au:+Zettlemoyer_L/0/1/0/all/0/1">Luke Zettlemoyer</a>, <a href="http://arxiv.org/find/cs/1/au:+Henderson_J/0/1/0/all/0/1">James Henderson</a>, <a href="http://arxiv.org/find/cs/1/au:+Saeidi_M/0/1/0/all/0/1">Marzieh Saeidi</a>, <a href="http://arxiv.org/find/cs/1/au:+Mathias_L/0/1/0/all/0/1">Lambert Mathias</a>, <a href="http://arxiv.org/find/cs/1/au:+Stoyanov_V/0/1/0/all/0/1">Veselin Stoyanov</a>, <a href="http://arxiv.org/find/cs/1/au:+Yazdani_M/0/1/0/all/0/1">Majid Yazdani</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:392;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.02255";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:116:"Sufficient Reasons for A Zero-Day Intrusion Detection Artificial Immune System. (arXiv:2204.02255v2 [cs.AI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.02255";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:941:"<p>The Internet is the most complex machine humankind has ever built, and how to defense it from intrusions is even more complex. With the ever increasing of new intrusions, intrusion detection task rely on Artificial Intelligence more and more. Interpretability and transparency of the machine learning model is the foundation of trust in AI-driven intrusion detection results. Current interpretation Artificial Intelligence technologies in intrusion detection are heuristic, which is neither accurate nor sufficient. This paper proposed a rigorous interpretable Artificial Intelligence driven intrusion detection approach, based on artificial immune system. Details of rigorous interpretation calculation process for a decision tree model is presented. Prime implicant explanation for benign traffic flow are given in detail as rule for negative selection of the cyber immune system. Experiments are carried out in real-life traffic. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:475:" <a href="http://arxiv.org/find/cs/1/au:+Zhou_Q/0/1/0/all/0/1">Qianru Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_R/0/1/0/all/0/1">Rongzhen Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_L/0/1/0/all/0/1">Lei Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Nallanathan_A/0/1/0/all/0/1">Arumugam Nallanathan</a>, <a href="http://arxiv.org/find/cs/1/au:+Yanga_J/0/1/0/all/0/1">Jian Yanga</a>, <a href="http://arxiv.org/find/cs/1/au:+Fu_A/0/1/0/all/0/1">Anmin Fu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:393;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.06173";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:100:"Task-Driven Data Augmentation for Vision-Based Robotic Control. (arXiv:2204.06173v2 [cs.RO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.06173";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1486:"<p>Today's robots often interface data-driven perception and planning models with classical model-based controllers. For example, drones often use computer vision models to estimate navigation waypoints that are tracked by model predictive control (MPC). Often, such learned perception/planning models produce erroneous waypoint predictions on out-of-distribution (OoD) or even adversarial visual inputs, which increase control cost. However, today's methods to train robust perception models are largely task-agnostic - they augment a dataset using random image transformations or adversarial examples targeted at the vision model in isolation. As such, they often introduce pixel perturbations that are ultimately benign for control, while missing those that are most adversarial. In contrast to prior work that synthesizes adversarial examples for single-step vision tasks, our key contribution is to efficiently synthesize adversarial scenarios for multi-step, model-based control. To do so, we leverage differentiable MPC methods to calculate the sensitivity of a model-based controller to errors in state estimation, which in turn guides how we synthesize adversarial inputs. We show that re-training vision models on these adversarial datasets improves control performance on OoD test scenarios by up to 28.2% compared to standard task-agnostic data augmentation. Our system is tested on examples of robotic navigation and vision-based control of an autonomous air vehicle. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:181:" <a href="http://arxiv.org/find/cs/1/au:+Agarwal_S/0/1/0/all/0/1">Shubhankar Agarwal</a>, <a href="http://arxiv.org/find/cs/1/au:+Chinchali_S/0/1/0/all/0/1">Sandeep P. Chinchali</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:394;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.06466";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:115:"Grand canonical ensembles of sparse networks and Bayesian inference. (arXiv:2204.06466v2 [cond-mat.dis-nn] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.06466";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1147:"<p>Maximum entropy network ensembles have been very successful in modelling sparse network topologies and in solving challenging inference problems. However the sparse maximum entropy network models proposed so far have fixed number of nodes and are typically not exchangeable. Here we consider hierarchical models for exchangeable networks in the sparse limit, i.e. with the total number of links scaling linearly with the total number of nodes. The approach is grand canonical, i.e. the number of nodes of the network is not fixed a priori: it is finite but can be arbitrarily large. In this way the grand canonical network ensembles circumvent the difficulties in treating infinite sparse exchangeable networks which according to the Aldous-Hoover theorem must vanish. The approach can treat networks with given degree distribution or networks with given distribution of latent variables. When only a subgraph induced by a subset of nodes is known, this model allows a Bayesian estimation of the network size and the degree sequence (or the sequence of latent variables) of the entire network which can be used for network reconstruction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:94:" <a href="http://arxiv.org/find/cond-mat/1/au:+Bianconi_G/0/1/0/all/0/1">Ginestra Bianconi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:395;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.07341";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:86:"LaMemo: Language Modeling with Look-Ahead Memory. (arXiv:2204.07341v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.07341";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1091:"<p>Although Transformers with fully connected self-attentions are powerful to model long-term dependencies, they are struggling to scale to long texts with thousands of words in language modeling. One of the solutions is to equip the model with a recurrence memory. However, existing approaches directly reuse hidden states from the previous segment that encodes contexts in a uni-directional way. As a result, this prohibits the memory to dynamically interact with the current context that provides up-to-date information for token prediction. To remedy this issue, we propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens, and interpolating with the old memory states to maintain long-term information in the history. LaMemo embraces bi-directional attention and segment recurrence with an additional computation overhead only linearly proportional to the memory length. Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:394:" <a href="http://arxiv.org/find/cs/1/au:+Ji_H/0/1/0/all/0/1">Haozhe Ji</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_R/0/1/0/all/0/1">Rongsheng Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_Z/0/1/0/all/0/1">Zhenyu Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Hu_Z/0/1/0/all/0/1">Zhipeng Hu</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_M/0/1/0/all/0/1">Minlie Huang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:396;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.07352";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:182:"A Differentially Private Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations. (arXiv:2204.07352v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.07352";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1339:"<p>We propose a novel federated learning paradigm to model data variability among heterogeneous clients in multi-centric studies. Our method is expressed through a hierarchical Bayesian latent variable model, where client-specific parameters are assumed to be realization from a global distribution at the master level, which is in turn estimated to account for data bias and variability across clients. We show that our framework can be effectively optimized through expectation maximization (EM) over latent master's distribution and clients' parameters. We also introduce formal differential privacy (DP) guarantees compatibly with our EM optimization scheme. We tested our method on the analysis of multi-modal medical imaging data and clinical scores from distributed clinical datasets of patients affected by Alzheimer's disease. We demonstrate that our method is robust when data is distributed either in iid and non-iid manners, even when local parameters perturbation is included to provide DP guarantees. Moreover, the variability of data, views and centers can be quantified in an interpretable manner, while guaranteeing high-quality data reconstruction as compared to state-of-the-art autoencoding models and federated learning schemes. The code is available at https://gitlab.inria.fr/epione/federated-multi-views-ppca. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:250:" <a href="http://arxiv.org/find/cs/1/au:+Balelli_I/0/1/0/all/0/1">Irene Balelli</a>, <a href="http://arxiv.org/find/cs/1/au:+Silva_S/0/1/0/all/0/1">Santiago Silva</a>, <a href="http://arxiv.org/find/cs/1/au:+Lorenzi_M/0/1/0/all/0/1">Marco Lorenzi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:397;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.07462";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:81:"Two new families of bivariate APN functions. (arXiv:2204.07462v2 [cs.IT] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.07462";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:642:"<p>In this work, we present two new families of quadratic APN functions. The first one (F1) is constructed via biprojective polynomials. This family includes one of the two APN families introduced by G\"olo\v{g}lu in 2022. Then, following a similar approach as in Li \emph{et al.} (2022), we give another family (F2) obtained by adding certain terms to F1. As a byproduct, this second family includes one of the two families introduced by Li \emph{et al.} (2022). Moreover, we show that for $n=12$, from our constructions, we can obtain APN functions that are CCZ-inequivalent to any other known APN function over $\mathbb{F}_{2^{12}}$. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:244:" <a href="http://arxiv.org/find/cs/1/au:+Calderini_M/0/1/0/all/0/1">Marco Calderini</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_K/0/1/0/all/0/1">Kangquan Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Villa_I/0/1/0/all/0/1">Irene Villa</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:398;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.07570";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:128:"TreeStep: Tree Search for Vector Perturbation Precoding under per-Antenna Power Constraint. (arXiv:2204.07570v2 [cs.NI] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.07570";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:980:"<p>Vector Perturbation Precoding (VPP) can speed up downlink data transmissions in Large and Massive Multi-User MIMO systems but is known to be NP-hard. While there are several algorithms in the literature for VPP under total power constraint, they are not applicable for VPP under per-antenna power constraint. This paper proposes a novel, parallel tree search algorithm for VPP under per-antenna power constraint, called \emph{\textbf{TreeStep}}, to find good quality solutions to the VPP problem with practical computational complexity. We show that our method can provide huge performance gain over simple linear precoding like Regularised Zero Forcing. We evaluate TreeStep for several large MIMO~($16\times16$ and $24\times24$) and massive MIMO~($16\times32$ and $24\times 48$) and demonstrate that TreeStep outperforms the popular polynomial-time VPP algorithm, the Fixed Complexity Sphere Encoder, by achieving the extremely low BER of $10^{-6}$ at a much lower SNR. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/cs/1/au:+Singh_A/0/1/0/all/0/1">Abhishek Kumar Singh</a>, <a href="http://arxiv.org/find/cs/1/au:+Jamieson_K/0/1/0/all/0/1">Kyle Jamieson</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:399;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.08479";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:125:"Inductive Biases for Object-Centric Representations in the Presence of Complex Textures. (arXiv:2204.08479v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.08479";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:756:"<p>Understanding which inductive biases could be helpful for the unsupervised learning of object-centric representations of natural scenes is challenging. We use neural style transfer to generate datasets where objects have complex textures while still retaining ground-truth annotations. We find that methods that use a single module to reconstruct both the shape and visual appearance of each object learn more useful representations and achieve better object separation. In addition, we observe that adjusting the latent space size is not sufficient to improve segmentation performance. Finally, the downstream usefulness of the representations is significantly more strongly correlated with segmentation quality than with reconstruction accuracy. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:246:" <a href="http://arxiv.org/find/cs/1/au:+Papa_S/0/1/0/all/0/1">Samuele Papa</a>, <a href="http://arxiv.org/find/cs/1/au:+Winther_O/0/1/0/all/0/1">Ole Winther</a>, <a href="http://arxiv.org/find/cs/1/au:+Dittadi_A/0/1/0/all/0/1">Andrea Dittadi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:400;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.08714";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"NAFSSR: Stereo Image Super-Resolution Using NAFNet. (arXiv:2204.08714v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.08714";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1223:"<p>Stereo image super-resolution aims at enhancing the quality of super-resolution results by utilizing the complementary information provided by binocular systems. To obtain reasonable performance, most methods focus on finely designing modules, loss functions, and etc. to exploit information from another viewpoint. This has the side effect of increasing system complexity, making it difficult for researchers to evaluate new ideas and compare methods. This paper inherits a strong and simple image restoration model, NAFNet, for single-view feature extraction and extends it by adding cross attention modules to fuse features between views to adapt to binocular scenarios. The proposed baseline for stereo image super-resolution is noted as NAFSSR. Furthermore, training/testing strategies are proposed to fully exploit the performance of NAFSSR. Extensive experiments demonstrate the effectiveness of our method. In particular, NAFSSR outperforms the state-of-the-art methods on the KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets. With NAFSSR, we won 1st place in the NTIRE 2022 Stereo Image Super-resolution Challenge. Codes and models will be released at https://github.com/megvii-research/NAFNet. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:233:" <a href="http://arxiv.org/find/cs/1/au:+Chu_X/0/1/0/all/0/1">Xiaojie Chu</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_L/0/1/0/all/0/1">Liangyu Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_W/0/1/0/all/0/1">Wenqing Yu</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:401;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.09007";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:93:"Opal: Multimodal Image Generation for News Illustration. (arXiv:2204.09007v2 [cs.HC] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.09007";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1035:"<p>Multimodal AI advancements have presented people with powerful ways to create images from text. Recent work has shown that text-to-image generations are able to represent a broad range of subjects and artistic styles. However, translating text prompts into visual messages is difficult. In this paper, we address this challenge with Opal, a system that produces text-to-image generations for editorial illustration. Given an article text, Opal guides users through a structured search for visual concepts and provides pipelines allowing users to illustrate based on an article's tone, subjects, and intended illustration style. Our evaluation shows that Opal efficiently generates diverse sets of editorial illustrations, graphic assets, and concept ideas. Users with Opal were more efficient at generation and generated over two times more usable results than users without. We conclude on a discussion of how structured and rapid exploration can help users better understand the capabilities of human AI co-creative systems. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:236:" <a href="http://arxiv.org/find/cs/1/au:+Liu_V/0/1/0/all/0/1">Vivian Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Qiao_H/0/1/0/all/0/1">Han Qiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Chilton_L/0/1/0/all/0/1">Lydia Chilton</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:402;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.09110";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"Councils in Action: Automating the Curation of Municipal Governance Data for Research. (arXiv:2204.09110v2 [cs.DL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.09110";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1007:"<p>Large scale comparative research into municipal governance is often prohibitively difficult due to a lack of high-quality data. But, recent advances in speech-to-text algorithms and natural language processing has made it possible to more easily collect and analyze data about municipal governments. In this paper, we introduce an open-source platform, the Council Data Project (CDP), to curate novel datasets for research into municipal governance. The contribution of this work is two-fold: 1. We demonstrate that CDP, as an infrastructure, can be used to assemble reliable comparative data on municipal governance; 2. We provide exploratory analysis of three municipalities to show how CDP data can be used to gain insight into how municipal governments perform over time. We conclude by describing future directions for research on and with CDP such as the development of machine learning models for speaker annotation, outline generation, and named entity recognition for improved linked data. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/cs/1/au:+Brown_J/0/1/0/all/0/1">Jackson Maxfield Brown</a>, <a href="http://arxiv.org/find/cs/1/au:+Weber_N/0/1/0/all/0/1">Nicholas Weber</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:403;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.09409";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:106:"Video Moment Retrieval from Text Queries via Single Frame Annotation. (arXiv:2204.09409v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.09409";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1349:"<p>Video moment retrieval aims at finding the start and end timestamps of a moment (part of a video) described by a given natural language query. Fully supervised methods need complete temporal boundary annotations to achieve promising results, which is costly since the annotator needs to watch the whole moment. Weakly supervised methods only rely on the paired video and query, but the performance is relatively poor. In this paper, we look closer into the annotation process and propose a new paradigm called "glance annotation". This paradigm requires the timestamp of only one single random frame, which we refer to as a "glance", within the temporal boundary of the fully supervised counterpart. We argue this is beneficial because comparing to weak supervision, trivial cost is added yet more potential in performance is provided. Under the glance annotation setting, we propose a method named as Video moment retrieval via Glance Annotation (ViGA) based on contrastive learning. ViGA cuts the input video into clips and contrasts between clips and queries, in which glance guided Gaussian distributed weights are assigned to all clips. Our extensive experiments indicate that ViGA achieves better results than the state-of-the-art weakly supervised methods by a large margin, even comparable to fully supervised methods in some cases. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:630:" <a href="http://arxiv.org/find/cs/1/au:+Cui_R/0/1/0/all/0/1">Ran Cui</a>, <a href="http://arxiv.org/find/cs/1/au:+Qian_T/0/1/0/all/0/1">Tianwen Qian</a>, <a href="http://arxiv.org/find/cs/1/au:+Peng_P/0/1/0/all/0/1">Pai Peng</a>, <a href="http://arxiv.org/find/cs/1/au:+Daskalaki_E/0/1/0/all/0/1">Elena Daskalaki</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_J/0/1/0/all/0/1">Jingjing Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Wei_D/0/1/0/all/0/1">De Wei</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_H/0/1/0/all/0/1">Huyang Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Y/0/1/0/all/0/1">Yu-Gang Jiang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:404;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.09649";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:123:"BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking. (arXiv:2204.09649v3 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.09649";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1238:"<p>We present Blinded Memory (BliMe), a way to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of ISA extensions that uses taint tracking to ensure the confidentiality of sensitive (client) data even in the presence of server malware, run-time attacks, and side-channel attacks. </p> <p>To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function trusted execution environment (TEE) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. The TEE engages in an attestation and key agreement protocol with the client. It provides the resulting client-specific keys to the encryption engine. Clients rely on remote attestation to ensure that their data will always be protected by BliMe's taint tracking policy after decryption. </p> <p>We provide a machine-checked security proof and an FPGA implementation (BliMe-Ibex) of BliMe's taint tracking policy. We show that BliMe-Ibex does not reduce performance relative to the unmodified core, and incurs only minor increases in resource consumption in terms of power (${\approx}2.1\%$), LUTs (${\approx}1.0\%$), and registers (${\approx}2.3\%$). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:337:" <a href="http://arxiv.org/find/cs/1/au:+ElAtali_H/0/1/0/all/0/1">Hossam ElAtali</a>, <a href="http://arxiv.org/find/cs/1/au:+Gunn_L/0/1/0/all/0/1">Lachlan J. Gunn</a>, <a href="http://arxiv.org/find/cs/1/au:+Liljestrand_H/0/1/0/all/0/1">Hans Liljestrand</a>, <a href="http://arxiv.org/find/cs/1/au:+Asokan_N/0/1/0/all/0/1">N. Asokan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:405;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10022";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:146:"Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions. (arXiv:2204.10022v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10022";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1590:"<p>Estimating the effects of continuous-valued interventions from observational data is critically important in fields such as climate science, healthcare, and economics. Recent work focuses on designing neural-network architectures and regularization functions to allow for scalable estimation of average and individual-level dose response curves from high-dimensional, large-sample data. Such methodologies assume ignorability (all confounding variables are observed) and positivity (all levels of treatment can be observed for every unit described by a given covariate value), which are especially challenged in the continuous treatment regime. Developing scalable sensitivity and uncertainty analyses that allow us to understand the ignorance induced in our estimates when these assumptions are relaxed receives less attention. Here, we develop a continuous treatment-effect marginal sensitivity model (CMSM) and derive bounds that agree with both the observed data and a researcher-defined level of hidden confounding. We introduce a scalable algorithm to derive the bounds and uncertainty-aware deep models to efficiently estimate these bounds for high-dimensional, large-sample observational data. We validate our methods using both synthetic and real-world experiments. For the latter, we work in concert with climate scientists interested in evaluating the climatological impacts of human emissions on cloud properties using satellite observations from the past 15 years: a finite-data problem known to be complicated by the presence of a multitude of unobserved confounders. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:588:" <a href="http://arxiv.org/find/cs/1/au:+Jesson_A/0/1/0/all/0/1">Andrew Jesson</a>, <a href="http://arxiv.org/find/cs/1/au:+Douglas_A/0/1/0/all/0/1">Alyson Douglas</a>, <a href="http://arxiv.org/find/cs/1/au:+Manshausen_P/0/1/0/all/0/1">Peter Manshausen</a>, <a href="http://arxiv.org/find/cs/1/au:+Meinshausen_N/0/1/0/all/0/1">Nicolai Meinshausen</a>, <a href="http://arxiv.org/find/cs/1/au:+Stier_P/0/1/0/all/0/1">Philip Stier</a>, <a href="http://arxiv.org/find/cs/1/au:+Gal_Y/0/1/0/all/0/1">Yarin Gal</a>, <a href="http://arxiv.org/find/cs/1/au:+Shalit_U/0/1/0/all/0/1">Uri Shalit</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:406;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10072";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:94:"Detecting Topology Attacks against Graph Neural Networks. (arXiv:2204.10072v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10072";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1053:"<p>Graph neural networks (GNNs) have been widely used in many real applications, and recent studies have revealed their vulnerabilities against topology attacks. To address this issue, existing efforts have mainly been dedicated to improving the robustness of GNNs, while little attention has been paid to the detection of such attacks. In this work, we study the victim node detection problem under topology attacks against GNNs. Our approach is built upon the key observation rooted in the intrinsic message passing nature of GNNs. That is, the neighborhood of a victim node tends to have two competing group forces, pushing the node classification results towards the original label and the targeted label, respectively. Based on this observation, we propose to detect victim nodes by deliberately designing an effective measurement of the neighborhood variance for each node. Extensive experimental results on four real-world datasets and five existing topology attacks show the effectiveness and efficiency of the proposed detection approach. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:457:" <a href="http://arxiv.org/find/cs/1/au:+Xu_S/0/1/0/all/0/1">Senrong Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Yao_Y/0/1/0/all/0/1">Yuan Yao</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_L/0/1/0/all/0/1">Liangyue Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_W/0/1/0/all/0/1">Wei Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Xu_F/0/1/0/all/0/1">Feng Xu</a>, <a href="http://arxiv.org/find/cs/1/au:+Tong_H/0/1/0/all/0/1">Hanghang Tong</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:407;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10160";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:113:"A Multi-Person Video Dataset Annotation Method of Spatio-Temporally Actions. (arXiv:2204.10160v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10160";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:973:"<p>Spatio-temporal action detection is an important and challenging problem in video understanding. However, the application of the existing large-scale spatio-temporal action datasets in specific fields is limited, and there is currently no public tool for making spatio-temporal action datasets, it takes a lot of time and effort for researchers to customize the spatio-temporal action datasets, so we propose a multi-Person video dataset Annotation Method of spatio-temporally actions.First, we use ffmpeg to crop the videos and frame the videos; then use yolov5 to detect human in the video frame, and then use deep sort to detect the ID of the human in the video frame. By processing the detection results of yolov5 and deep sort, we can get the annotation file of the spatio-temporal action dataset to complete the work of customizing the spatio-temporal action dataset. https://github.com/Whiffe/Custom-ava-dataset_Custom-Spatio-Temporally-Action-Video-Dataset </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:75:" <a href="http://arxiv.org/find/cs/1/au:+Yang_F/0/1/0/all/0/1">Fan Yang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:408;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10169";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"A computational study of Gomory-Hu tree algorithms. (arXiv:2204.10169v2 [cs.DS] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10169";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:543:"<p>We present an experimental study of algorithms for computing the Gomory-Hu tree (aka cut tree) in undirected weighted graphs. We develop a new implementation based on two popular maxflow algorithms, IBFS and BK. We compare it with the algorithms from the previous experimental study by Goldberg and Tsioutsiouliklis (2001) and with the more recent algorithm by Akibo et al. (2016) (designed for unweighted simple graphs). Results indicate that on some classes of problems new implementation significantly outperforms previous methods. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:92:" <a href="http://arxiv.org/find/cs/1/au:+Kolmogorov_V/0/1/0/all/0/1">Vladimir Kolmogorov</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:409;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10178";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:124:"Doctor XAvIer: Explainable Diagnosis on Physician-Patient Dialogues and XAI Evaluation. (arXiv:2204.10178v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10178";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:676:"<p>We introduce Doctor XAvIer, a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods: Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:163:" <a href="http://arxiv.org/find/cs/1/au:+Ngai_H/0/1/0/all/0/1">Hillary Ngai</a>, <a href="http://arxiv.org/find/cs/1/au:+Rudzicz_F/0/1/0/all/0/1">Frank Rudzicz</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:410;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10479";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:102:"Analysis of Temporal Difference Learning: Linear System Approach. (arXiv:2204.10479v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10479";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:881:"<p>The goal of this technical note is to introduce a new finite-time convergence analysis of temporal difference (TD) learning based on stochastic linear system models. TD-learning is a fundamental reinforcement learning (RL) to evaluate a given policy by estimating the corresponding value function for a Markov decision process. While there has been a series of successful works in theoretical analysis of TDlearning, it was not until recently that researchers found some guarantees on its statistical efficiency by developing finite-time error bounds. In this paper, we propose a simple control theoretic finite-time analysis of TD-learning, which exploits linear system models and standard notions in linear system communities. The proposed work provides new simple templets for RL analysis, and additional insights on TD-learning and RL based on ideas in control theory. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:155:" <a href="http://arxiv.org/find/cs/1/au:+Lee_D/0/1/0/all/0/1">Donghwan Lee</a>, <a href="http://arxiv.org/find/cs/1/au:+Kim_D/0/1/0/all/0/1">Do Wan Kim</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:411;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10584";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:90:"Non-Uniformly Terminating Chase: Size and Complexity. (arXiv:2204.10584v2 [cs.DB] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10584";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1135:"<p>The chase procedure, originally introduced for checking implication of database constraints, and later on used for computing data exchange solutions, has recently become a central algorithmic tool in rule-based ontological reasoning. In this context, a key problem is non-uniform chase termination: does the chase of a database w.r.t. a rule-based ontology terminate? And if this is the case, what is the size of the result of the chase? We focus on guarded tuple-generating dependencies (TGDs), which form a robust rule-based ontology language, and study the above central questions for the semi-oblivious version of the chase. One of our main findings is that non-uniform semi-oblivious chase termination for guarded TGDs is feasible in polynomial time w.r.t. the database, and the size of the result of the chase (whenever is finite) is linear w.r.t. the database. Towards our results concerning non-uniform chase termination, we show that basic techniques such as simplification and linearization, originally introduced in the context of ontological query answering, can be safely applied to the chase termination problem. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:253:" <a href="http://arxiv.org/find/cs/1/au:+Calautti_M/0/1/0/all/0/1">Marco Calautti</a>, <a href="http://arxiv.org/find/cs/1/au:+Gottlob_G/0/1/0/all/0/1">Georg Gottlob</a>, <a href="http://arxiv.org/find/cs/1/au:+Pieris_A/0/1/0/all/0/1">Andreas Pieris</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:412;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10836";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:108:"Federated Learning Enables Big Data for Rare Cancer Boundary Detection. (arXiv:2204.10836v2 [cs.LG] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10836";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1465:"<p>Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:4284:" <a href="http://arxiv.org/find/cs/1/au:+Pati_S/0/1/0/all/0/1">Sarthak Pati</a>, <a href="http://arxiv.org/find/cs/1/au:+Baid_U/0/1/0/all/0/1">Ujjwal Baid</a>, <a href="http://arxiv.org/find/cs/1/au:+Edwards_B/0/1/0/all/0/1">Brandon Edwards</a>, <a href="http://arxiv.org/find/cs/1/au:+Sheller_M/0/1/0/all/0/1">Micah Sheller</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_S/0/1/0/all/0/1">Shih-Han Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Reina_G/0/1/0/all/0/1">G Anthony Reina</a>, <a href="http://arxiv.org/find/cs/1/au:+Foley_P/0/1/0/all/0/1">Patrick Foley</a>, <a href="http://arxiv.org/find/cs/1/au:+Gruzdev_A/0/1/0/all/0/1">Alexey Gruzdev</a>, <a href="http://arxiv.org/find/cs/1/au:+Karkada_D/0/1/0/all/0/1">Deepthi Karkada</a>, <a href="http://arxiv.org/find/cs/1/au:+Davatzikos_C/0/1/0/all/0/1">Christos Davatzikos</a>, <a href="http://arxiv.org/find/cs/1/au:+Sako_C/0/1/0/all/0/1">Chiharu Sako</a>, <a href="http://arxiv.org/find/cs/1/au:+Ghodasara_S/0/1/0/all/0/1">Satyam Ghodasara</a>, <a href="http://arxiv.org/find/cs/1/au:+Bilello_M/0/1/0/all/0/1">Michel Bilello</a>, <a href="http://arxiv.org/find/cs/1/au:+Mohan_S/0/1/0/all/0/1">Suyash Mohan</a>, <a href="http://arxiv.org/find/cs/1/au:+Vollmuth_P/0/1/0/all/0/1">Philipp Vollmuth</a>, <a href="http://arxiv.org/find/cs/1/au:+Brugnara_G/0/1/0/all/0/1">Gianluca Brugnara</a>, <a href="http://arxiv.org/find/cs/1/au:+Preetha_C/0/1/0/all/0/1">Chandrakanth J Preetha</a>, <a href="http://arxiv.org/find/cs/1/au:+Sahm_F/0/1/0/all/0/1">Felix Sahm</a>, <a href="http://arxiv.org/find/cs/1/au:+Maier_Hein_K/0/1/0/all/0/1">Klaus Maier-Hein</a>, <a href="http://arxiv.org/find/cs/1/au:+Zenk_M/0/1/0/all/0/1">Maximilian Zenk</a>, <a href="http://arxiv.org/find/cs/1/au:+Bendszus_M/0/1/0/all/0/1">Martin Bendszus</a>, <a href="http://arxiv.org/find/cs/1/au:+Wick_W/0/1/0/all/0/1">Wolfgang Wick</a>, <a href="http://arxiv.org/find/cs/1/au:+Calabrese_E/0/1/0/all/0/1">Evan Calabrese</a>, <a href="http://arxiv.org/find/cs/1/au:+Rudie_J/0/1/0/all/0/1">Jeffrey Rudie</a>, <a href="http://arxiv.org/find/cs/1/au:+Villanueva_Meyer_J/0/1/0/all/0/1">Javier Villanueva-Meyer</a>, <a href="http://arxiv.org/find/cs/1/au:+Cha_S/0/1/0/all/0/1">Soonmee Cha</a>, <a href="http://arxiv.org/find/cs/1/au:+Ingalhalikar_M/0/1/0/all/0/1">Madhura Ingalhalikar</a>, <a href="http://arxiv.org/find/cs/1/au:+Jadhav_M/0/1/0/all/0/1">Manali Jadhav</a>, <a href="http://arxiv.org/find/cs/1/au:+Pandey_U/0/1/0/all/0/1">Umang Pandey</a>, <a href="http://arxiv.org/find/cs/1/au:+Saini_J/0/1/0/all/0/1">Jitender Saini</a>, <a href="http://arxiv.org/find/cs/1/au:+Garrett_J/0/1/0/all/0/1">John Garrett</a>, <a href="http://arxiv.org/find/cs/1/au:+Larson_M/0/1/0/all/0/1">Matthew Larson</a>, <a href="http://arxiv.org/find/cs/1/au:+Jeraj_R/0/1/0/all/0/1">Robert Jeraj</a>, <a href="http://arxiv.org/find/cs/1/au:+Currie_S/0/1/0/all/0/1">Stuart Currie</a>, <a href="http://arxiv.org/find/cs/1/au:+Frood_R/0/1/0/all/0/1">Russell Frood</a>, <a href="http://arxiv.org/find/cs/1/au:+Fatania_K/0/1/0/all/0/1">Kavi Fatania</a>, <a href="http://arxiv.org/find/cs/1/au:+Huang_R/0/1/0/all/0/1">Raymond Y Huang</a>, <a href="http://arxiv.org/find/cs/1/au:+Chang_K/0/1/0/all/0/1">Ken Chang</a>, <a href="http://arxiv.org/find/cs/1/au:+Balana_C/0/1/0/all/0/1">Carmen Balana</a>, <a href="http://arxiv.org/find/cs/1/au:+Capellades_J/0/1/0/all/0/1">Jaume Capellades</a>, <a href="http://arxiv.org/find/cs/1/au:+Puig_J/0/1/0/all/0/1">Josep Puig</a>, <a href="http://arxiv.org/find/cs/1/au:+Trenkler_J/0/1/0/all/0/1">Johannes Trenkler</a>, <a href="http://arxiv.org/find/cs/1/au:+Pichler_J/0/1/0/all/0/1">Josef Pichler</a>, <a href="http://arxiv.org/find/cs/1/au:+Necker_G/0/1/0/all/0/1">Georg Necker</a>, <a href="http://arxiv.org/find/cs/1/au:+Haunschmidt_A/0/1/0/all/0/1">Andreas Haunschmidt</a>, <a href="http://arxiv.org/find/cs/1/au:+Meckel_S/0/1/0/all/0/1">Stephan Meckel</a>, <a href="http://arxiv.org/find/cs/1/au:+Shukla_G/0/1/0/all/0/1">Gaurav Shukla</a>, <a href="http://arxiv.org/find/cs/1/au:+Liem_S/0/1/0/all/0/1">Spencer Liem</a>, <a href="http://arxiv.org/find/cs/1/au:+Alexander_G/0/1/0/all/0/1">Gregory S Alexander</a>, <a href="http://arxiv.org/find/cs/1/au:+Lombardo_J/0/1/0/all/0/1">Joseph Lombardo</a>, et al. (229 additional authors not shown)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:413;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10869";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:92:"Identity Preserving Loss for Learned Image Compression. (arXiv:2204.10869v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10869";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1731:"<p>Deep learning model inference on embedded devices is challenging due to the limited availability of computation resources. A popular alternative is to perform model inference on the cloud, which requires transmitting images from the embedded device to the cloud. Image compression techniques are commonly employed in such cloud-based architectures to reduce transmission latency over low bandwidth networks. This work proposes an end-to-end image compression framework that learns domain-specific features to achieve higher compression ratios than standard HEVC/JPEG compression techniques while maintaining accuracy on downstream tasks (e.g., recognition). Our framework does not require fine-tuning of the downstream task, which allows us to drop-in any off-the-shelf downstream task model without retraining. We choose faces as an application domain due to the ready availability of datasets and off-the-shelf recognition models as representative downstream tasks. We present a novel Identity Preserving Reconstruction (IPR) loss function which achieves Bits-Per-Pixel (BPP) values that are ~38% and ~42% of CRF-23 HEVC compression for LFW (low-resolution) and CelebA-HQ (high-resolution) datasets, respectively, while maintaining parity in recognition accuracy. The superior compression ratio is achieved as the model learns to retain the domain-specific features (e.g., facial features) while sacrificing details in the background. Furthermore, images reconstructed by our proposed compression model are robust to changes in downstream model architectures. We show at-par recognition performance on the LFW dataset with an unseen recognition model while retaining a lower BPP value of ~38% of CRF-23 HEVC compression. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:429:" <a href="http://arxiv.org/find/cs/1/au:+Xiao_J/0/1/0/all/0/1">Jiuhong Xiao</a>, <a href="http://arxiv.org/find/cs/1/au:+Aggarwal_L/0/1/0/all/0/1">Lavisha Aggarwal</a>, <a href="http://arxiv.org/find/cs/1/au:+Banerjee_P/0/1/0/all/0/1">Prithviraj Banerjee</a>, <a href="http://arxiv.org/find/cs/1/au:+Aggarwal_M/0/1/0/all/0/1">Manoj Aggarwal</a>, <a href="http://arxiv.org/find/cs/1/au:+Medioni_G/0/1/0/all/0/1">Gerard Medioni</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:414;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10893";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:116:"Locally Aggregated Feature Attribution on Natural Language Model Understanding. (arXiv:2204.10893v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10893";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1213:"<p>With the growing popularity of deep-learning models, model understanding becomes more important. Much effort has been devoted to demystify deep neural networks for better interpretability. Some feature attribution methods have shown promising results in computer vision, especially the gradient-based methods where effectively smoothing the gradients with reference data is key to a robust and faithful result. However, direct application of these gradient-based methods to NLP tasks is not trivial due to the fact that the input consists of discrete tokens and the "reference" tokens are not explicitly defined. In this work, we propose Locally Aggregated Feature Attribution (LAFA), a novel gradient-based feature attribution method for NLP models. Instead of relying on obscure reference tokens, it smooths gradients by aggregating similar reference texts derived from language model embeddings. For evaluation purpose, we also design experiments on different NLP tasks including Entity Recognition and Sentiment Analysis on public datasets as well as key feature detection on a constructed Amazon catalogue dataset. The superior performance of the proposed method is demonstrated through experiments. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:312:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_S/0/1/0/all/0/1">Sheng Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">Jin Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_H/0/1/0/all/0/1">Haitao Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Song_R/0/1/0/all/0/1">Rui Song</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:415;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.10938";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:110:"A Multi-level Alignment Training Scheme for Video-and-Language Grounding. (arXiv:2204.10938v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.10938";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1372:"<p>To solve video-and-language grounding tasks, the key is for the network to understand the connection between the two modalities. For a pair of video and language description, their semantic relation is reflected by their encodings' similarity. A good multi-modality encoder should be able to well capture both inputs' semantics and encode them in the shared feature space where embedding distance gets properly translated into their semantic similarity. In this work, we focused on this semantic connection between video and language, and developed a multi-level alignment training scheme to directly shape the encoding process. Global and segment levels of video-language alignment pairs were designed, based on the information similarity ranging from high-level context to fine-grained semantics. The contrastive loss was used to contrast the encodings' similarities between the positive and negative alignment pairs, and to ensure the network is trained in such a way that similar information is encoded closely in the shared feature space while information of different semantics is kept apart. Our multi-level alignment training can be applied to various video-and-language grounding tasks. Together with the task-specific training loss, our framework achieved comparable performance to previous state-of-the-arts on multiple video QA and retrieval datasets. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:318:" <a href="http://arxiv.org/find/cs/1/au:+Zhang_Y/0/1/0/all/0/1">Yubo Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Niu_F/0/1/0/all/0/1">Feiyang Niu</a>, <a href="http://arxiv.org/find/cs/1/au:+Ping_Q/0/1/0/all/0/1">Qing Ping</a>, <a href="http://arxiv.org/find/cs/1/au:+Thattai_G/0/1/0/all/0/1">Govind Thattai</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:416;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11025";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"GAMORRA: An API-Level Workload Model for Rasterization-based Graphics Pipeline Architecture. (arXiv:2204.11025v2 [cs.GR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11025";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1606:"<p>The performance of applications that require frame rendering time estimation or dynamic frequency scaling, rely on the accuracy of the workload model that is utilized within these applications. Existing models lack sufficient accuracy in their core model. Hence, they require changes to the target application or the hardware to produce accurate results. This paper introduces a mathematical workload model for a rasterization-based graphics Application Programming Interface (API) pipeline, named GAMORRA, which works based on the load and complexity of each stage of the pipeline. Firstly, GAMORRA models each stage of the pipeline based on their operation complexity and the input data size. Then, the calculated workloads of the stages are fed to a Multiple Linear Regression (MLR) model as explanatory variables. A hybrid offline/online training scheme is proposed as well to train the model. A suite of benchmarks is also designed to tune the model parameters based on the performance of the target system. The experiments were performed on Direct3D 11 and on two different rendering platforms comparing GAMORRA to an AutoRegressive (AR) model, a Frame Complexity Model (FCM) and a frequency-based (FRQ) model. The experiments show an average of 1.27 ms frame rendering time estimation error (9.45%) compared to an average of 1.87 ms error (13.23%) for FCM which is the best method among the three chosen methods. However, this comes at the cost of 0.54 ms (4.58%) increase in time complexity compared to FCM. Furthermore, GAMMORA improves frametime underestimations by 1.1% compared to FCM. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:274:" <a href="http://arxiv.org/find/cs/1/au:+Mohammadi_I/0/1/0/all/0/1">Iman Soltani Mohammadi</a>, <a href="http://arxiv.org/find/cs/1/au:+Ghanbari_M/0/1/0/all/0/1">Mohammad Ghanbari</a>, <a href="http://arxiv.org/find/cs/1/au:+Hashemi_M/0/1/0/all/0/1">Mahmoud Reza Hashemi</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:417;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11368";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:140:"Enhancing the STIX Representation of MITRE ATT&CK for Group Filtering and Technique Prioritization. (arXiv:2204.11368v2 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11368";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:542:"<p>In this paper, we enhance the machine-readable representation of the ATT&CK Groups knowledge base provided by MITRE in STIX 2.1 format to make available and queryable additional types of contextual information. Such information includes the motivations of activity groups, the countries they have originated from, and the sectors and countries they have targeted. We demonstrate how to utilize the enhanced model to construct intelligible queries to filter activity groups of interest and retrieve relevant tactical intelligence. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:173:" <a href="http://arxiv.org/find/cs/1/au:+Zych_M/0/1/0/all/0/1">Mateusz Zych</a>, <a href="http://arxiv.org/find/cs/1/au:+Mavroeidis_V/0/1/0/all/0/1">Vasileios Mavroeidis</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:418;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11382";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Real-time Speech Emotion Recognition Based on Syllable-Level Feature Extraction. (arXiv:2204.11382v2 [cs.SD] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11382";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1368:"<p>Speech emotion recognition systems have high prediction latency because of the high computational requirements for deep learning models and low generalizability mainly because of the poor reliability of emotional measurements across multiple corpora. To solve these problems, we present a speech emotion recognition system based on a reductionist approach of decomposing and analyzing syllable-level features. Mel-spectrogram of an audio stream is decomposed into syllable-level components, which are then analyzed to extract statistical features. The proposed method uses formant attention, noise-gate filtering, and rolling normalization contexts to increase feature processing speed and tolerance to adversity. A set of syllable-level formant features is extracted and fed into a single hidden layer neural network that makes predictions for each syllable as opposed to the conventional approach of using a sophisticated deep learner to make sentence-wide predictions. The syllable level predictions help to achieve the real-time latency and lower the aggregated error in utterance level cross-corpus predictions. The experiments on IEMOCAP (IE), MSP-Improv (MI), and RAVDESS (RA) databases show that the method archives real-time latency while predicting with state-of-the-art cross-corpus unweighted accuracy of 47.6% for IE to MI and 56.2% for MI to IE. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:395:" <a href="http://arxiv.org/find/cs/1/au:+Rehman_A/0/1/0/all/0/1">Abdul Rehman</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_Z/0/1/0/all/0/1">Zhen-Tao Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_M/0/1/0/all/0/1">Min Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_W/0/1/0/all/0/1">Wei-Hua Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_C/0/1/0/all/0/1">Cheng-Shan Jiang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:419;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11411";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:105:"Road Traffic Law Adaptive Decision-making for Self-Driving Vehicles. (arXiv:2204.11411v2 [cs.RO] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11411";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1831:"<p>Self-driving vehicles have their own intelligence to drive on open roads. However, vehicle managers, e.g., government or industrial companies, still need a way to tell these self-driving vehicles what behaviors are encouraged or forbidden. Unlike human drivers, current self-driving vehicles cannot understand the traffic laws, thus rely on the programmers manually writing the corresponding principles into the driving systems. It would be less efficient and hard to adapt some temporary traffic laws, especially when the vehicles use data-driven decision-making algorithms. Besides, current self-driving vehicle systems rarely take traffic law modification into consideration. This work aims to design a road traffic law adaptive decision-making method. The decision-making algorithm is designed based on reinforcement learning, in which the traffic rules are usually implicitly coded in deep neural networks. The main idea is to supply the adaptability to traffic laws of self-driving vehicles by a law-adaptive backup policy. In this work, the natural language-based traffic laws are first translated into a logical expression by the Linear Temporal Logic method. Then, the system will try to monitor in advance whether the self-driving vehicle may break the traffic laws by designing a long-term RL action space. Finally, a sample-based planning method will re-plan the trajectory when the vehicle may break the traffic rules. The method is validated in a Beijing Winter Olympic Lane scenario and an overtaking case, built in CARLA simulator. The results show that by adopting this method, the self-driving vehicles can comply with new issued or updated traffic laws effectively. This method helps self-driving vehicles governed by digital traffic laws, which is necessary for the wide adoption of autonomous driving. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:694:" <a href="http://arxiv.org/find/cs/1/au:+Liu_J/0/1/0/all/0/1">Jiaxin Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhou_W/0/1/0/all/0/1">Wenhui Zhou</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_H/0/1/0/all/0/1">Hong Wang</a>, <a href="http://arxiv.org/find/cs/1/au:+Cao_Z/0/1/0/all/0/1">Zhong Cao</a>, <a href="http://arxiv.org/find/cs/1/au:+Yu_W/0/1/0/all/0/1">Wenhao Yu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_C/0/1/0/all/0/1">Chengxiang Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_D/0/1/0/all/0/1">Ding Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Yang_D/0/1/0/all/0/1">Diange Yang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_J/0/1/0/all/0/1">Jun Li</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:420;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11582";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:117:"Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object Detection. (arXiv:2204.11582v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11582";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1803:"<p>3D object detection from multiple image views is a fundamental and challenging task for visual scene understanding. Due to its low cost and high efficiency, multi-view 3D object detection has demonstrated promising application prospects. However, accurately detecting objects through perspective views in the 3D space is extremely difficult due to the lack of depth information. Recently, DETR3D introduces a novel 3D-2D query paradigm in aggregating multi-view images for 3D object detection and achieves state-of-the-art performance. In this paper, with intensive pilot experiments, we quantify the objects located at different regions and find that the "truncated instances" (i.e., at the border regions of each image) are the main bottleneck hindering the performance of DETR3D. Although it merges multiple features from two adjacent views in the overlapping regions, DETR3D still suffers from insufficient feature aggregation, thus missing the chance to fully boost the detection performance. In an effort to tackle the problem, we propose Graph-DETR3D to automatically aggregate multi-view imagery information through graph structure learning (GSL). It constructs a dynamic 3D graph between each object query and 2D feature maps to enhance the object representations, especially at the border regions. Besides, Graph-DETR3D benefits from a novel depth-invariant multi-scale training strategy, which maintains the visual depth consistency by simultaneously scaling the image size and the object depth. Extensive experiments on the nuScenes dataset demonstrate the effectiveness and efficiency of our Graph-DETR3D. Notably, our best model achieves 49.5 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various published image-view 3D object detectors. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:473:" <a href="http://arxiv.org/find/cs/1/au:+Chen_Z/0/1/0/all/0/1">Zehui Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Z/0/1/0/all/0/1">Zhenyu Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_S/0/1/0/all/0/1">Shiquan Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Fang_L/0/1/0/all/0/1">Liangji Fang</a>, <a href="http://arxiv.org/find/cs/1/au:+Jiang_Q/0/1/0/all/0/1">Qinhong Jiang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_F/0/1/0/all/0/1">Feng Zhao</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:421;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11587";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:139:"Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction. (arXiv:2204.11587v2 [cs.IR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11587";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1188:"<p>Rich user behavior information is of great importance for capturing and understanding user interest in click-through rate (CTR) prediction. To improve the richness, collecting long-term behaviors becomes a typical approach in academy and industry but at the cost of increasing online storage and latency. Recently, researchers have proposed several approaches to shorten long-term behavior sequence and then model user interests. These approaches reduce online cost efficiently but do not well handle the noisy information in long-term user behavior, which may deteriorate the performance of CTR prediction significantly. To obtain better cost/performance trade-off, we propose a novel Adversarial Filtering Model (ADFM) to model long-term user behavior. ADFM uses a hierarchical aggregation representation to compress raw behavior sequence and then learns to remove useless behavior information with an adversarial filtering mechanism. The selected user behaviors are fed into interest extraction module for CTR prediction. Experimental results on public datasets and industrial dataset demonstrate that our method achieves significant improvements over state-of-the-art models. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:388:" <a href="http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1">Xiaochen Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhong_R/0/1/0/all/0/1">Rui Zhong</a>, <a href="http://arxiv.org/find/cs/1/au:+Liang_J/0/1/0/all/0/1">Jian Liang</a>, <a href="http://arxiv.org/find/cs/1/au:+Liu_X/0/1/0/all/0/1">Xialong Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_Y/0/1/0/all/0/1">Yu Zhang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:422;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11639";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:118:"Investigating Black-Box Function Recognition Using Hardware Performance Counters. (arXiv:2204.11639v2 [cs.CR] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11639";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1674:"<p>We present new methods and results for discovering information about black-box program functions using hardware performance counters (HPC), where an investigator can only invoke and measure the results of function calls. Important use cases include analysing compiled libraries, e.g. static and dynamic link libraries, and trusted execution environment (TEE) applications. Drawing inspiration from recent literature on malware classification, we develop and evaluate a machine learning-based approach using information from HPCs for function recognition. We use this to classify a comprehensive set of HPC events, including L1 instruction cache accesses, TLB misses, and instruction retirements, to recognise functions from standard benchmarking and cryptographic libraries. This includes various ciphers in different modes of operation, e.g. AES-CTR vs. AES-ECB; signing, verification, and hashing algorithms; and more. Three major architectures are evaluated using off-the-shelf Intel/X86-64, ARM, and RISC-V CPUs under various compilation assumptions. Following this, we develop and evaluate two novel use cases. Firstly, we show that several known CVE-numbered OpenSSL vulnerabilities can be detected using HPC differences between patched and unpatched library versions. Secondly, we develop a proof-of-concept for recognising standardised cryptographic functions within ARM TrustZone TEE applications using the open-source OP-TEE framework. In all cases, HPCs could be used with significant accuracy (86.22-99.83%) depending on the target architecture and application. Lastly, we discuss mitigations, outstanding challenges, and directions for future research. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:273:" <a href="http://arxiv.org/find/cs/1/au:+Shepherd_C/0/1/0/all/0/1">Carlton Shepherd</a>, <a href="http://arxiv.org/find/cs/1/au:+Semal_B/0/1/0/all/0/1">Benjamin Semal</a>, <a href="http://arxiv.org/find/cs/1/au:+Markantonakis_K/0/1/0/all/0/1">Konstantinos Markantonakis</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:423;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11797";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:103:"PVNAS: 3D Neural Architecture Search with Point-Voxel Convolution. (arXiv:2204.11797v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11797";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1359:"<p>3D neural networks are widely used in real-world applications (e.g., AR/VR headsets, self-driving cars). They are required to be fast and accurate; however, limited hardware resources on edge devices make these requirements rather challenging. Previous work processes 3D data using either voxel-based or point-based neural networks, but both types of 3D models are not hardware-efficient due to the large memory footprint and random memory access. In this paper, we study 3D deep learning from the efficiency perspective. We first systematically analyze the bottlenecks of previous 3D methods. We then combine the best from point-based and voxel-based models together and propose a novel hardware-efficient 3D primitive, Point-Voxel Convolution (PVConv). We further enhance this primitive with the sparse convolution to make it more effective in processing large (outdoor) scenes. Based on our designed 3D primitive, we introduce 3D Neural Architecture Search (3D-NAS) to explore the best 3D network architecture given a resource constraint. We evaluate our proposed method on six representative benchmark datasets, achieving state-of-the-art performance with 1.8-23.7x measured speedup. Furthermore, our method has been deployed to the autonomous racing vehicle of MIT Driverless, achieving larger detection range, higher accuracy and lower latency. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:390:" <a href="http://arxiv.org/find/cs/1/au:+Liu_Z/0/1/0/all/0/1">Zhijian Liu</a>, <a href="http://arxiv.org/find/cs/1/au:+Tang_H/0/1/0/all/0/1">Haotian Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhao_S/0/1/0/all/0/1">Shengyu Zhao</a>, <a href="http://arxiv.org/find/cs/1/au:+Shao_K/0/1/0/all/0/1">Kevin Shao</a>, <a href="http://arxiv.org/find/cs/1/au:+Han_S/0/1/0/all/0/1">Song Han</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:424;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11817";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:88:"Translation between Molecules and Natural Language. (arXiv:2204.11817v2 [cs.CL] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11817";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1578:"<p>Joint representations between images and text have been deeply investigated in the literature. In computer vision, the benefits of incorporating natural language have become clear for enabling semantic-level control of images. In this work, we present $\textbf{MolT5}-$a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings. $\textbf{MolT5}$ allows for new, useful, and challenging analogs of traditional vision-language tasks, such as molecule captioning and text-based de novo molecule generation (altogether: translation between molecules and language), which we explore for the first time. Furthermore, since $\textbf{MolT5}$ pretrains models on single-modal data, it helps overcome the chemistry domain shortcoming of data scarcity. Additionally, we consider several metrics, including a new cross-modal embedding-based metric, to evaluate the tasks of molecule captioning and text-based molecule generation. By interfacing molecules with natural language, we enable a higher semantic level of control over molecule discovery and understanding--a critical task for scientific domains such as drug discovery and material design. Our results show that $\textbf{MolT5}$-based models are able to generate outputs, both molecule and text, which in many cases are high quality and match the input modality. On molecule generation, our best model achieves 30% exact matching test accuracy (i.e., it generates the correct structure for about one-third of the captions in our held-out test set). </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:388:" <a href="http://arxiv.org/find/cs/1/au:+Edwards_C/0/1/0/all/0/1">Carl Edwards</a>, <a href="http://arxiv.org/find/cs/1/au:+Lai_T/0/1/0/all/0/1">Tuan Lai</a>, <a href="http://arxiv.org/find/cs/1/au:+Ros_K/0/1/0/all/0/1">Kevin Ros</a>, <a href="http://arxiv.org/find/cs/1/au:+Honke_G/0/1/0/all/0/1">Garrett Honke</a>, <a href="http://arxiv.org/find/cs/1/au:+Ji_H/0/1/0/all/0/1">Heng Ji</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:425;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11824";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:74:"Retrieval-Augmented Diffusion Models. (arXiv:2204.11824v2 [cs.CV] UPDATED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11824";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1272:"<p>Generative image synthesis with diffusion models has recently achieved excellent visual quality in several tasks such as text-based or class-conditional image synthesis. Much of this success is due to a dramatic increase in the computational capacity invested in training these models. This work presents an alternative approach: inspired by its successful application in natural language processing, we propose to complement the diffusion model with a retrieval-based approach and to introduce an explicit memory in the form of an external database. During training, our diffusion model is trained with similar visual features retrieved via CLIP and from the neighborhood of each training instance. By leveraging CLIP's joint image-text embedding space, our model achieves highly competitive performance on tasks for which it has not been explicitly trained, such as class-conditional or text-image synthesis, and can be conditioned on both text and image embeddings. Moreover, we can apply our approach to unconditional generation, where it achieves state-of-the-art performance. Our approach incurs low computational and memory overheads and is easy to implement. We discuss its relationship to concurrent work and will publish code and pretrained models soon. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:337:" <a href="http://arxiv.org/find/cs/1/au:+Blattmann_A/0/1/0/all/0/1">Andreas Blattmann</a>, <a href="http://arxiv.org/find/cs/1/au:+Rombach_R/0/1/0/all/0/1">Robin Rombach</a>, <a href="http://arxiv.org/find/cs/1/au:+Oktay_K/0/1/0/all/0/1">Kaan Oktay</a>, <a href="http://arxiv.org/find/cs/1/au:+Ommer_B/0/1/0/all/0/1">Björn Ommer</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:426;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2202.04915";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:129:"Quantum advantage using high-dimensional twisted photons as quantum finite automata. (arXiv:2202.04915v1 [quant-ph] CROSS LISTED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2202.04915";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1007:"<p>Quantum finite automata (QFA) are basic computational devices that make binary decisions using quantum operations. They are known to be exponentially memory efficient compared to their classical counterparts. Here, we demonstrate an experimental implementation of multi-qubit QFAs using the orbital angular momentum (OAM) of single photons. We implement different high-dimensional QFAs encoded on a single photon, where multiple qubits operate in parallel without the need for complicated multi-partite operations. Using two to eight OAM quantum states to implement up to four parallel qubits, we show that a high-dimensional QFA is able to detect the prime numbers 5 and 11 while outperforming classical finite automata in terms of the required memory. Our work benefits from the ease of encoding, manipulating, and deciphering multi-qubit states encoded in the OAM degree of freedom of single photons, demonstrating the advantages structured photons provide for complex quantum information tasks. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:395:" <a href="http://arxiv.org/find/quant-ph/1/au:+Plachta_S/0/1/0/all/0/1">Stephen Z. D. Plachta</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Hiekkamaki_M/0/1/0/all/0/1">Markus Hiekkamäki</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Yakaryilmaz_A/0/1/0/all/0/1">Abuzer Yakaryılmaz</a>, <a href="http://arxiv.org/find/quant-ph/1/au:+Fickler_R/0/1/0/all/0/1">Robert Fickler</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:427;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11188";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:86:"M2N: Mesh Movement Networks for PDE Solvers. (arXiv:2204.11188v1 [cs.LG] CROSS LISTED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11188";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1457:"<p>Mainstream numerical Partial Differential Equation (PDE) solvers require discretizing the physical domain using a mesh. Mesh movement methods aim to improve the accuracy of the numerical solution by increasing mesh resolution where the solution is not well-resolved, whilst reducing unnecessary resolution elsewhere. However, mesh movement methods, such as the Monge-Ampere method, require the solution of auxiliary equations, which can be extremely expensive especially when the mesh is adapted frequently. In this paper, we propose to our best knowledge the first learning-based end-to-end mesh movement framework for PDE solvers. Key requirements of learning-based mesh movement methods are alleviating mesh tangling, boundary consistency, and generalization to mesh with different resolutions. To achieve these goals, we introduce the neural spline model and the graph attention network (GAT) into our models respectively. While the Neural-Spline based model provides more flexibility for large deformation, the GAT based model can handle domains with more complicated shapes and is better at performing delicate local deformation. We validate our methods on stationary and time-dependent, linear and non-linear equations, as well as regularly and irregularly shaped domains. Compared to the traditional Monge-Ampere method, our approach can greatly accelerate the mesh adaptation process, whilst achieving comparable numerical error reduction. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:886:" <a href="http://arxiv.org/find/cs/1/au:+Song_W/0/1/0/all/0/1">Wenbin Song</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_M/0/1/0/all/0/1">Mingrui Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Wallwork_J/0/1/0/all/0/1">Joseph G. Wallwork</a>, <a href="http://arxiv.org/find/cs/1/au:+Gao_J/0/1/0/all/0/1">Junpeng Gao</a>, <a href="http://arxiv.org/find/cs/1/au:+Tian_Z/0/1/0/all/0/1">Zheng Tian</a>, <a href="http://arxiv.org/find/cs/1/au:+Sun_F/0/1/0/all/0/1">Fanglei Sun</a>, <a href="http://arxiv.org/find/cs/1/au:+Piggott_M/0/1/0/all/0/1">Matthew D. Piggott</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_J/0/1/0/all/0/1">Junqing Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Shi_Z/0/1/0/all/0/1">Zuoqiang Shi</a>, <a href="http://arxiv.org/find/cs/1/au:+Chen_X/0/1/0/all/0/1">Xiang Chen</a>, <a href="http://arxiv.org/find/cs/1/au:+Wang_J/0/1/0/all/0/1">Jun Wang</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:428;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11338";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:107:"Taming Hybrid-Cloud Fast and Scalable Graph Analytics at Twitter. (arXiv:2204.11338v1 [cs.DB] CROSS LISTED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11338";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:1239:"<p>We have witnessed a boosted demand for graph analytics at Twitter in recent years, and graph analytics has become one of the key parts of Twitter's large-scale data analytics and machine learning for driving engagement, serving the most relevant content, and promoting healthier conversations. However, infrastructure for graph analytics has historically not been an area of investment at Twitter, resulting in a long timeline and huge engineering effort for each project to deal with graphs at the Twitter scale. How do we build a unified graph analytics user experience to fulfill modern data analytics on various graph scales spanning from thousands to hundreds of billions of vertices and edges? </p> <p>To bring fast and scalable graph analytics capability into production, we investigate the challenges we are facing in large-scale graph analytics at Twitter and propose a unified graph analytics platform for efficient, scalable, and reliable graph analytics across on-premises and cloud, to fulfill the requirements of diverse graph use cases and challenging scales. We also conduct quantitative benchmarking on Twitter's production-level graph use cases between popular graph analytics frameworks to certify our solution. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:988:" <a href="http://arxiv.org/find/cs/1/au:+Tang_C/0/1/0/all/0/1">Chunxu Tang</a>, <a href="http://arxiv.org/find/cs/1/au:+Li_Y/0/1/0/all/0/1">Yao Li</a>, <a href="http://arxiv.org/find/cs/1/au:+Luo_Z/0/1/0/all/0/1">Zhenxiao Luo</a>, <a href="http://arxiv.org/find/cs/1/au:+Ghosh_M/0/1/0/all/0/1">Mainak Ghosh</a>, <a href="http://arxiv.org/find/cs/1/au:+Wu_H/0/1/0/all/0/1">Huijun Wu</a>, <a href="http://arxiv.org/find/cs/1/au:+Zhang_L/0/1/0/all/0/1">Lu Zhang</a>, <a href="http://arxiv.org/find/cs/1/au:+Lu_A/0/1/0/all/0/1">Anneliese Lu</a>, <a href="http://arxiv.org/find/cs/1/au:+Kabra_R/0/1/0/all/0/1">Ruchin Kabra</a>, <a href="http://arxiv.org/find/cs/1/au:+Navadiya_N/0/1/0/all/0/1">Nikhil Kantibhai Navadiya</a>, <a href="http://arxiv.org/find/cs/1/au:+Mishra_P/0/1/0/all/0/1">Prachi Mishra</a>, <a href="http://arxiv.org/find/cs/1/au:+Mukhedkar_P/0/1/0/all/0/1">Prateek Mukhedkar</a>, <a href="http://arxiv.org/find/cs/1/au:+Channapattan_V/0/1/0/all/0/1">Vrushali Channapattan</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}i:429;a:6:{s:4:"data";s:5:" ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:5:"about";s:31:"http://arxiv.org/abs/2204.11593";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";s:5:"child";a:2:{s:24:"http://purl.org/rss/1.0/";a:3:{s:5:"title";a:1:{i:0;a:5:{s:4:"data";s:136:"Scaling Cross-Domain Content-Based Image Retrieval for E-commerce Snap and Search Application. (arXiv:2204.11593v1 [cs.IR] CROSS LISTED)";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:4:"link";a:1:{i:0;a:5:{s:4:"data";s:31:"http://arxiv.org/abs/2204.11593";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}s:11:"description";a:1:{i:0;a:5:{s:4:"data";s:549:"<p>In this industry talk at ECIR 2022, we illustrate how we approach the main challenges from large scale cross-domain content-based image retrieval using a cascade method and a combination of our visual search and classification capabilities. Specifically, we present a system that is able to handle the scale of the data for e-commerce usage and the cross-domain nature of the query and gallery image pools. We showcase the approach applied in real-world e-commerce snap and search use case and its impact on ranking and latency performance. </p> ";s:7:"attribs";a:1:{s:43:"http://www.w3.org/1999/02/22-rdf-syntax-ns#";a:1:{s:9:"parseType";s:7:"Literal";}}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}s:32:"http://purl.org/dc/elements/1.1/";a:1:{s:7:"creator";a:1:{i:0;a:5:{s:4:"data";s:258:" <a href="http://arxiv.org/find/cs/1/au:+Chung_I/0/1/0/all/0/1">Isaac Kwan Yin Chung</a>, <a href="http://arxiv.org/find/cs/1/au:+Tran_M/0/1/0/all/0/1">Minh Tran</a>, <a href="http://arxiv.org/find/cs/1/au:+Nussinovitch_E/0/1/0/all/0/1">Eran Nussinovitch</a>";s:7:"attribs";a:0:{}s:8:"xml_base";s:0:"";s:17:"xml_base_explicit";b:0;s:8:"xml_lang";s:0:"";}}}}}}}}}}}}s:4:"type";i:64;s:7:"headers";a:8:{s:4:"date";s:29:"Wed, 27 Apr 2022 03:32:07 GMT";s:6:"server";s:6:"Apache";s:4:"etag";s:45:""Wed, 27 Apr 2022 00:30:00 GMT", "1651019400"";s:7:"expires";s:29:"Thu, 28 Apr 2022 00:00:00 GMT";s:13:"last-modified";s:29:"Wed, 27 Apr 2022 00:30:00 GMT";s:4:"vary";s:26:"Accept-Encoding,User-Agent";s:16:"content-encoding";s:4:"gzip";s:12:"content-type";s:8:"text/xml";}s:5:"build";s:14:"20170417072931";}