OXIESEC PANEL
- Current Dir:
/
/
usr
/
include
/
opencv2
/
flann
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
📁
..
-
10/28/2024 06:50:42 AM
rwxr-xr-x
📄
all_indices.h
5.82 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
allocator.h
5.92 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
any.h
8.06 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
autotuned_index.h
20.36 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
composite_index.h
5.85 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
config.h
1.75 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
defines.h
4.61 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
dist.h
26.9 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
dummy.h
251 bytes
05/12/2017 03:45:27 AM
rw-r--r--
📄
dynamic_bitset.h
4.45 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
flann.hpp
2.31 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
flann_base.hpp
8.65 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
general.h
1.99 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
ground_truth.h
3.23 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
hdf5.h
7.13 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
heap.h
4.01 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
hierarchical_clustering_index.h
25.42 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
index_testing.h
10.56 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
kdtree_index.h
19.22 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
kdtree_single_index.h
19.7 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
kmeans_index.h
36.05 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
linear_index.h
3.61 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
logger.h
3.63 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
lsh_index.h
15.19 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
lsh_table.h
17.51 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
matrix.h
3.21 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
miniflann.hpp
5.75 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
nn_index.h
5.91 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
object_factory.h
2.83 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
params.h
3.2 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
random.h
3.61 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
result_set.h
14.64 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
sampling.h
2.78 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
saving.h
5.64 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
simplex_downhill.h
5.61 KB
05/12/2017 03:45:27 AM
rw-r--r--
📄
timer.h
2.47 KB
05/12/2017 03:45:27 AM
rw-r--r--
Editing: composite_index.h
Close
/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_ #define OPENCV_FLANN_COMPOSITE_INDEX_H_ #include "general.h" #include "nn_index.h" #include "kdtree_index.h" #include "kmeans_index.h" namespace cvflann { /** * Index parameters for the CompositeIndex. */ struct CompositeIndexParams : public IndexParams { CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) { (*this)["algorithm"] = FLANN_INDEX_KMEANS; // number of randomized trees to use (for kdtree) (*this)["trees"] = trees; // branching factor (*this)["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) (*this)["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree (*this)["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree (*this)["cb_index"] = cb_index; } }; /** * This index builds a kd-tree index and a k-means index and performs nearest * neighbour search both indexes. This gives a slight boost in search performance * as some of the neighbours that are missed by one index are found by the other. */ template <typename Distance> class CompositeIndex : public NNIndex<Distance> { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; /** * Index constructor * @param inputData dataset containing the points to index * @param params Index parameters * @param d Distance functor * @return */ CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(), Distance d = Distance()) : index_params_(params) { kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d); kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d); } CompositeIndex(const CompositeIndex&); CompositeIndex& operator=(const CompositeIndex&); virtual ~CompositeIndex() { delete kdtree_index_; delete kmeans_index_; } /** * @return The index type */ flann_algorithm_t getType() const { return FLANN_INDEX_COMPOSITE; } /** * @return Size of the index */ size_t size() const { return kdtree_index_->size(); } /** * \returns The dimensionality of the features in this index. */ size_t veclen() const { return kdtree_index_->veclen(); } /** * \returns The amount of memory (in bytes) used by the index. */ int usedMemory() const { return kmeans_index_->usedMemory() + kdtree_index_->usedMemory(); } /** * \brief Builds the index */ void buildIndex() { Logger::info("Building kmeans tree...\n"); kmeans_index_->buildIndex(); Logger::info("Building kdtree tree...\n"); kdtree_index_->buildIndex(); } /** * \brief Saves the index to a stream * \param stream The stream to save the index to */ void saveIndex(FILE* stream) { kmeans_index_->saveIndex(stream); kdtree_index_->saveIndex(stream); } /** * \brief Loads the index from a stream * \param stream The stream from which the index is loaded */ void loadIndex(FILE* stream) { kmeans_index_->loadIndex(stream); kdtree_index_->loadIndex(stream); } /** * \returns The index parameters */ IndexParams getParameters() const { return index_params_; } /** * \brief Method that searches for nearest-neighbours */ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) { kmeans_index_->findNeighbors(result, vec, searchParams); kdtree_index_->findNeighbors(result, vec, searchParams); } private: /** The k-means index */ KMeansIndex<Distance>* kmeans_index_; /** The kd-tree index */ KDTreeIndex<Distance>* kdtree_index_; /** The index parameters */ const IndexParams index_params_; }; } #endif //OPENCV_FLANN_COMPOSITE_INDEX_H_