OXIESEC PANEL
- Current Dir:
/
/
var
/
www
/
reader
/
hps
/
faces
/
.venv
/
lib
/
python3.10
/
site-packages
/
numpy
/
lib
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
📁
..
-
10/26/2024 01:26:35 PM
rwxr-xr-x
📄
__init__.py
2.2 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
__init__.pyi
5.48 KB
10/26/2024 01:26:29 PM
rw-r--r--
📁
__pycache__
-
10/26/2024 01:27:40 PM
rwxr-xr-x
📄
_datasource.py
22.11 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_iotools.py
30.15 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_version.py
4.74 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_version.pyi
633 bytes
10/26/2024 01:26:29 PM
rw-r--r--
📄
arraypad.py
30.63 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraypad.pyi
1.69 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraysetops.py
32.87 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraysetops.pyi
8.14 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arrayterator.py
6.9 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arrayterator.pyi
1.5 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
format.py
33.41 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
format.pyi
748 bytes
10/26/2024 01:26:27 PM
rw-r--r--
📄
function_base.py
180.8 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
function_base.pyi
16.2 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
histograms.py
36.81 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
histograms.pyi
995 bytes
10/26/2024 01:26:28 PM
rw-r--r--
📄
index_tricks.py
30.22 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
index_tricks.pyi
4.14 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
mixins.py
6.89 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
mixins.pyi
3.04 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
nanfunctions.py
64.02 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
nanfunctions.pyi
606 bytes
10/26/2024 01:26:28 PM
rw-r--r--
📄
npyio.py
95.15 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
npyio.pyi
9.39 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
polynomial.py
43.11 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
polynomial.pyi
6.79 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
recfunctions.py
54.93 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
scimath.py
14.68 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
scimath.pyi
2.82 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
setup.py
405 bytes
10/26/2024 01:26:29 PM
rw-r--r--
📄
shape_base.py
38.35 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
shape_base.pyi
5.06 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
stride_tricks.py
17.49 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
stride_tricks.pyi
1.71 KB
10/26/2024 01:26:29 PM
rw-r--r--
📁
tests
-
10/26/2024 01:28:54 PM
rwxr-xr-x
📄
twodim_base.py
30.62 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
twodim_base.pyi
5.24 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
type_check.py
19.46 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
type_check.pyi
5.44 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
ufunclike.py
7.84 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
ufunclike.pyi
1.26 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
user_array.py
7.54 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
utils.py
35.3 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
utils.pyi
2.3 KB
10/26/2024 01:26:29 PM
rw-r--r--
Editing: twodim_base.pyi
Close
from collections.abc import Callable, Sequence from typing import ( Any, overload, TypeVar, Union, ) from numpy import ( generic, number, bool_, timedelta64, datetime64, int_, intp, float64, signedinteger, floating, complexfloating, object_, _OrderCF, ) from numpy._typing import ( DTypeLike, _DTypeLike, ArrayLike, _ArrayLike, NDArray, _SupportsArrayFunc, _ArrayLikeInt_co, _ArrayLikeFloat_co, _ArrayLikeComplex_co, _ArrayLikeObject_co, ) _T = TypeVar("_T") _SCT = TypeVar("_SCT", bound=generic) # The returned arrays dtype must be compatible with `np.equal` _MaskFunc = Callable[ [NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]], ] __all__: list[str] @overload def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def fliplr(m: ArrayLike) -> NDArray[Any]: ... @overload def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def flipud(m: ArrayLike) -> NDArray[Any]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[float64]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[_SCT]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[Any]: ... @overload def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[float64]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[_SCT]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[Any]: ... @overload def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[signedinteger[Any]]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[floating[Any]]: ... @overload def vander( x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def vander( x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[object_]: ... @overload def histogram2d( # type: ignore[misc] x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]], ]: ... @overload def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]], ]: ... @overload # TODO: Sort out `bins` def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[Any], NDArray[Any], ]: ... # NOTE: we're assuming/demanding here the `mask_func` returns # an ndarray of shape `(n, n)`; otherwise there is the possibility # of the output tuple having more or less than 2 elements @overload def mask_indices( n: int, mask_func: _MaskFunc[int], k: int = ..., ) -> tuple[NDArray[intp], NDArray[intp]]: ... @overload def mask_indices( n: int, mask_func: _MaskFunc[_T], k: _T, ) -> tuple[NDArray[intp], NDArray[intp]]: ... def tril_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def tril_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ...