OXIESEC PANEL
- Current Dir:
/
/
var
/
www
/
reader
/
hps
/
faces
/
.venv
/
lib
/
python3.10
/
site-packages
/
numpy
/
lib
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
📁
..
-
10/26/2024 01:26:35 PM
rwxr-xr-x
📄
__init__.py
2.2 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
__init__.pyi
5.48 KB
10/26/2024 01:26:29 PM
rw-r--r--
📁
__pycache__
-
10/26/2024 01:27:40 PM
rwxr-xr-x
📄
_datasource.py
22.11 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_iotools.py
30.15 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_version.py
4.74 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
_version.pyi
633 bytes
10/26/2024 01:26:29 PM
rw-r--r--
📄
arraypad.py
30.63 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraypad.pyi
1.69 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraysetops.py
32.87 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arraysetops.pyi
8.14 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arrayterator.py
6.9 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
arrayterator.pyi
1.5 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
format.py
33.41 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
format.pyi
748 bytes
10/26/2024 01:26:27 PM
rw-r--r--
📄
function_base.py
180.8 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
function_base.pyi
16.2 KB
10/26/2024 01:26:27 PM
rw-r--r--
📄
histograms.py
36.81 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
histograms.pyi
995 bytes
10/26/2024 01:26:28 PM
rw-r--r--
📄
index_tricks.py
30.22 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
index_tricks.pyi
4.14 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
mixins.py
6.89 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
mixins.pyi
3.04 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
nanfunctions.py
64.02 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
nanfunctions.pyi
606 bytes
10/26/2024 01:26:28 PM
rw-r--r--
📄
npyio.py
95.15 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
npyio.pyi
9.39 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
polynomial.py
43.11 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
polynomial.pyi
6.79 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
recfunctions.py
54.93 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
scimath.py
14.68 KB
10/26/2024 01:26:28 PM
rw-r--r--
📄
scimath.pyi
2.82 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
setup.py
405 bytes
10/26/2024 01:26:29 PM
rw-r--r--
📄
shape_base.py
38.35 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
shape_base.pyi
5.06 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
stride_tricks.py
17.49 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
stride_tricks.pyi
1.71 KB
10/26/2024 01:26:29 PM
rw-r--r--
📁
tests
-
10/26/2024 01:28:54 PM
rwxr-xr-x
📄
twodim_base.py
30.62 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
twodim_base.pyi
5.24 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
type_check.py
19.46 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
type_check.pyi
5.44 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
ufunclike.py
7.84 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
ufunclike.pyi
1.26 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
user_array.py
7.54 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
utils.py
35.3 KB
10/26/2024 01:26:29 PM
rw-r--r--
📄
utils.pyi
2.3 KB
10/26/2024 01:26:29 PM
rw-r--r--
Editing: arraysetops.pyi
Close
from typing import ( Literal as L, Any, TypeVar, overload, SupportsIndex, ) from numpy import ( generic, number, bool_, ushort, ubyte, uintc, uint, ulonglong, short, int8, byte, intc, int_, intp, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) from numpy._typing import ( ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeDT64_co, _ArrayLikeTD64_co, _ArrayLikeObject_co, _ArrayLikeNumber_co, ) _SCT = TypeVar("_SCT", bound=generic) _NumberType = TypeVar("_NumberType", bound=number[Any]) # Explicitly set all allowed values to prevent accidental castings to # abstract dtypes (their common super-type). # # Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) # which could result in, for example, `int64` and `float64`producing a # `number[_64Bit]` array _SCTNoCast = TypeVar( "_SCTNoCast", bool_, ushort, ubyte, uintc, uint, ulonglong, short, byte, intc, int_, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) __all__: list[str] @overload def ediff1d( ary: _ArrayLikeBool_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[int8]: ... @overload def ediff1d( ary: _ArrayLike[_NumberType], to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[_NumberType]: ... @overload def ediff1d( ary: _ArrayLikeNumber_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[Any]: ... @overload def ediff1d( ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[timedelta64]: ... @overload def ediff1d( ary: _ArrayLikeObject_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[object_]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[_SCT]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[Any]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[_SCTNoCast]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[Any]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def setxor1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setxor1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ... def in1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... def isin( element: ArrayLike, test_elements: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... @overload def union1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], ) -> NDArray[_SCTNoCast]: ... @overload def union1d( ar1: ArrayLike, ar2: ArrayLike, ) -> NDArray[Any]: ... @overload def setdiff1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setdiff1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ...