OXIESEC PANEL
- Current Dir:
/
/
usr
/
share
/
doc
/
ninja-build
/
html
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
đ
..
-
10/28/2024 07:11:08 AM
rwxr-xr-x
đ
manual.html
59.51 KB
09/24/2017 09:06:26 AM
rw-r--r--
Editing: manual.html
Close
<!DOCTYPE html PUBLIC ""> <html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><title>The Ninja build system</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><style>body { margin: 5ex 10ex; max-width: 80ex; line-height: 1.5; font-family: sans-serif; } h1, h2, h3 { font-weight: normal; } pre, code { font-family: x, monospace; } pre { padding: 1ex; background: #eee; border: solid 1px #ddd; min-width: 0; font-size: 90%; } code { color: #007; } div.chapter { margin-top: 4em; border-top: solid 2px black; } p { margin-top: 0; } </style></head><body><div lang="en" class="book"><div class="titlepage"><div><div><h1 class="title"><a name="idm1"></a>The Ninja build system</h1></div><div><div class="author"><h3 class="author"><span class="firstname">v1.8.2,</span> <span class="othername">Sep</span> <span class="surname">2017</span></h3></div></div></div><hr></div><div class="toc"><ul class="toc"><li><span class="chapter"><a href="#_introduction">Introduction</a></span><ul><li><span class="section"><a href="#_philosophical_overview">Philosophical overview</a></span></li><li><span class="section"><a href="#_design_goals">Design goals</a></span></li><li><span class="section"><a href="#_comparison_to_make">Comparison to Make</a></span></li></ul></li><li><span class="chapter"><a href="#_using_ninja_for_your_project">Using Ninja for your project</a></span><ul><li><span class="section"><a href="#_running_ninja">Running Ninja</a></span></li><li><span class="section"><a href="#_environment_variables">Environment variables</a></span></li><li><span class="section"><a href="#_extra_tools">Extra tools</a></span></li></ul></li><li><span class="chapter"><a href="#_writing_your_own_ninja_files">Writing your own Ninja files</a></span><ul><li><span class="section"><a href="#_conceptual_overview">Conceptual overview</a></span></li><li><span class="section"><a href="#_syntax_example">Syntax example</a></span></li><li><span class="section"><a href="#_variables">Variables</a></span></li><li><span class="section"><a href="#_rules">Rules</a></span></li><li><span class="section"><a href="#_build_statements">Build statements</a></span></li><li><span class="section"><a href="#_generating_ninja_files_from_code">Generating Ninja files from code</a></span></li></ul></li><li><span class="chapter"><a href="#_more_details">More details</a></span><ul><li><span class="section"><a href="#_the_literal_phony_literal_rule">The <code class="literal">phony</code> rule</a></span></li><li><span class="section"><a href="#_default_target_statements">Default target statements</a></span></li><li><span class="section"><a href="#ref_log">The Ninja log</a></span></li><li><span class="section"><a href="#ref_versioning">Version compatibility</a></span></li><li><span class="section"><a href="#ref_headers">C/C++ header dependencies</a></span><ul><li><span class="section"><a href="#_depfile">depfile</a></span></li><li><span class="section"><a href="#_deps">deps</a></span></li></ul></li><li><span class="section"><a href="#ref_pool">Pools</a></span><ul><li><span class="section"><a href="#_the_literal_console_literal_pool">The <code class="literal">console</code> pool</a></span></li></ul></li></ul></li><li><span class="chapter"><a href="#_ninja_file_reference">Ninja file reference</a></span><ul><li><span class="section"><a href="#_lexical_syntax">Lexical syntax</a></span></li><li><span class="section"><a href="#ref_toplevel">Top-level variables</a></span></li><li><span class="section"><a href="#ref_rule">Rule variables</a></span><ul><li><span class="section"><a href="#ref_rule_command">Interpretation of the <code class="literal">command</code> variable</a></span></li></ul></li><li><span class="section"><a href="#ref_outputs">Build outputs</a></span></li><li><span class="section"><a href="#ref_dependencies">Build dependencies</a></span></li><li><span class="section"><a href="#_variable_expansion">Variable expansion</a></span></li><li><span class="section"><a href="#ref_scope">Evaluation and scoping</a></span></li></ul></li></ul></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="_introduction"></a>Introduction</h1></div></div></div><p>Ninja is yet another build system. It takes as input the interdependencies of files (typically source code and output executables) and orchestrates building them, <span class="emphasis"><em>quickly</em></span>.</p><p>Ninja joins a sea of other build systems. Its distinguishing goal is to be fast. It is born from <a class="ulink" href="http://neugierig.org/software/chromium/notes/2011/02/ninja.html" target="_top">my work on the Chromium browser project</a>, which has over 30,000 source files and whose other build systems (including one built from custom non-recursive Makefiles) would take ten seconds to start building after changing one file. Ninja is under a second.</p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_philosophical_overview"></a>Philosophical overview</h2></div></div></div><p>Where other build systems are high-level languages, Ninja aims to be an assembler.</p><p>Build systems get slow when they need to make decisions. When you are in a edit-compile cycle you want it to be as fast as possibleâââyou want the build system to do the minimum work necessary to figure out what needs to be built immediately.</p><p>Ninja contains the barest functionality necessary to describe arbitrary dependency graphs. Its lack of syntax makes it impossible to express complex decisions.</p><p>Instead, Ninja is intended to be used with a separate program generating its input files. The generator program (like the <code class="literal">./configure</code> found in autotools projects) can analyze system dependencies and make as many decisions as possible up front so that incremental builds stay fast. Going beyond autotools, even build-time decisions like "which compiler flags should I use?" or "should I build a debug or release-mode binary?" belong in the <code class="literal">.ninja</code> file generator.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_design_goals"></a>Design goals</h2></div></div></div><p>Here are the design goals of Ninja:</p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> very fast (i.e., instant) incremental builds, even for very large projects. </li><li class="listitem"> very little policy about how code is built. Different projects and higher-level build systems have different opinions about how code should be built; for example, should built objects live alongside the sources or should all build output go into a separate directory? Is there a "package" rule that builds a distributable package of the project? Sidestep these decisions by trying to allow either to be implemented, rather than choosing, even if that results in more verbosity. </li><li class="listitem"> get dependencies correct, and in particular situations that are difficult to get right with Makefiles (e.g. outputs need an implicit dependency on the command line used to generate them; to build C source code you need to use gccâs <code class="literal">-M</code> flags for header dependencies). </li><li class="listitem"> when convenience and speed are in conflict, prefer speed. </li></ul></div><p>Some explicit <span class="emphasis"><em>non-goals</em></span>:</p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> convenient syntax for writing build files by hand. <span class="emphasis"><em>You should generate your ninja files using another program</em></span>. This is how we can sidestep many policy decisions. </li><li class="listitem"> built-in rules. <span class="emphasis"><em>Out of the box, Ninja has no rules for e.g. compiling C code.</em></span> </li><li class="listitem"> build-time customization of the build. <span class="emphasis"><em>Options belong in the program that generates the ninja files</em></span>. </li><li class="listitem"> build-time decision-making ability such as conditionals or search paths. <span class="emphasis"><em>Making decisions is slow.</em></span> </li></ul></div><p>To restate, Ninja is faster than other build systems because it is painfully simple. You must tell Ninja exactly what to do when you create your projectâs <code class="literal">.ninja</code> files.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_comparison_to_make"></a>Comparison to Make</h2></div></div></div><p>Ninja is closest in spirit and functionality to Make, relying on simple dependencies between file timestamps.</p><p>But fundamentally, make has a lot of <span class="emphasis"><em>features</em></span>: suffix rules, functions, built-in rules that e.g. search for RCS files when building source. Makeâs language was designed to be written by humans. Many projects find make alone adequate for their build problems.</p><p>In contrast, Ninja has almost no features; just those necessary to get builds correct while punting most complexity to generation of the ninja input files. Ninja by itself is unlikely to be useful for most projects.</p><p>Here are some of the features Ninja adds to Make. (These sorts of features can often be implemented using more complicated Makefiles, but they are not part of make itself.)</p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> Ninja has special support for discovering extra dependencies at build time, making it easy to get <a class="link" href="#ref_headers" title="C/C++ header dependencies">header dependencies</a> correct for C/C++ code. </li><li class="listitem"> A build edge may have multiple outputs. </li><li class="listitem"> Outputs implicitly depend on the command line that was used to generate them, which means that changing e.g. compilation flags will cause the outputs to rebuild. </li><li class="listitem"> Output directories are always implicitly created before running the command that relies on them. </li><li class="listitem"> Rules can provide shorter descriptions of the command being run, so you can print e.g. <code class="literal">CC foo.o</code> instead of a long command line while building. </li><li class="listitem"> Builds are always run in parallel, based by default on the number of CPUs your system has. Underspecified build dependencies will result in incorrect builds. </li><li class="listitem"> Command output is always buffered. This means commands running in parallel donât interleave their output, and when a command fails we can print its failure output next to the full command line that produced the failure. </li></ul></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="_using_ninja_for_your_project"></a>Using Ninja for your project</h1></div></div></div><p>Ninja currently works on Unix-like systems and Windows. Itâs seen the most testing on Linux (and has the best performance there) but it runs fine on Mac OS X and FreeBSD.</p><p>If your project is small, Ninjaâs speed impact is likely unnoticeable. (However, even for small projects it sometimes turns out that Ninjaâs limited syntax forces simpler build rules that result in faster builds.) Another way to say this is that if youâre happy with the edit-compile cycle time of your project already then Ninja wonât help.</p><p>There are many other build systems that are more user-friendly or featureful than Ninja itself. For some recommendations: the Ninja author found <a class="ulink" href="http://gittup.org/tup/" target="_top">the tup build system</a> influential in Ninjaâs design, and thinks <a class="ulink" href="https://github.com/apenwarr/redo" target="_top">redo</a>'s design is quite clever.</p><p>Ninjaâs benefit comes from using it in conjunction with a smarter meta-build system.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <a class="ulink" href="http://code.google.com/p/gyp/" target="_top">gyp</a> </span></dt><dd> The meta-build system used to generate build files for Google Chrome and related projects (v8, node.js). gyp can generate Ninja files for all platforms supported by Chrome. See the <a class="ulink" href="https://chromium.googlesource.com/chromium/src/+/master/docs/ninja_build.md" target="_top">Chromium Ninja documentation for more details</a>. </dd><dt><span class="term"> <a class="ulink" href="https://cmake.org/" target="_top">CMake</a> </span></dt><dd> A widely used meta-build system that can generate Ninja files on Linux as of CMake version 2.8.8. Newer versions of CMake support generating Ninja files on Windows and Mac OS X too. </dd><dt><span class="term"> <a class="ulink" href="https://github.com/ninja-build/ninja/wiki/List-of-generators-producing-ninja-build-files" target="_top">others</a> </span></dt><dd> Ninja ought to fit perfectly into other meta-build software like <a class="ulink" href="http://industriousone.com/premake" target="_top">premake</a>. If you do this work, please let us know! </dd></dl></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_running_ninja"></a>Running Ninja</h2></div></div></div><p>Run <code class="literal">ninja</code>. By default, it looks for a file named <code class="literal">build.ninja</code> in the current directory and builds all out-of-date targets. You can specify which targets (files) to build as command line arguments.</p><p>There is also a special syntax <code class="literal">target^</code> for specifying a target as the first output of some rule containing the source you put in the command line, if one exists. For example, if you specify target as <code class="literal">foo.c^</code> then <code class="literal">foo.o</code> will get built (assuming you have those targets in your build files).</p><p><code class="literal">ninja -h</code> prints help output. Many of Ninjaâs flags intentionally match those of Make; e.g <code class="literal">ninja -C build -j 20</code> changes into the <code class="literal">build</code> directory and runs 20 build commands in parallel. (Note that Ninja defaults to running commands in parallel anyway, so typically you donât need to pass <code class="literal">-j</code>.)</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_environment_variables"></a>Environment variables</h2></div></div></div><p>Ninja supports one environment variable to control its behavior: <code class="literal">NINJA_STATUS</code>, the progress status printed before the rule being run.</p><p>Several placeholders are available:</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal">%s</code> </span></dt><dd> The number of started edges. </dd><dt><span class="term"> <code class="literal">%t</code> </span></dt><dd> The total number of edges that must be run to complete the build. </dd><dt><span class="term"> <code class="literal">%p</code> </span></dt><dd> The percentage of started edges. </dd><dt><span class="term"> <code class="literal">%r</code> </span></dt><dd> The number of currently running edges. </dd><dt><span class="term"> <code class="literal">%u</code> </span></dt><dd> The number of remaining edges to start. </dd><dt><span class="term"> <code class="literal">%f</code> </span></dt><dd> The number of finished edges. </dd><dt><span class="term"> <code class="literal">%o</code> </span></dt><dd> Overall rate of finished edges per second </dd><dt><span class="term"> <code class="literal">%c</code> </span></dt><dd> Current rate of finished edges per second (average over builds specified by <code class="literal">-j</code> or its default) </dd><dt><span class="term"> <code class="literal">%e</code> </span></dt><dd> Elapsed time in seconds. <span class="emphasis"><em>(Available since Ninja 1.2.)</em></span> </dd><dt><span class="term"> <code class="literal">%%</code> </span></dt><dd> A plain <code class="literal">%</code> character. </dd></dl></div><p>The default progress status is <code class="literal">"[%f/%t] "</code> (note the trailing space to separate from the build rule). Another example of possible progress status could be <code class="literal">"[%u/%r/%f] "</code>.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_extra_tools"></a>Extra tools</h2></div></div></div><p>The <code class="literal">-t</code> flag on the Ninja command line runs some tools that we have found useful during Ninjaâs development. The current tools are:</p><div class="horizontal"><table class="horizontal" border="0"><colgroup><col><col></colgroup><tbody valign="top"><tr><td valign="top"> <p> <code class="literal">query</code> </p> </td><td valign="top"> <p> dump the inputs and outputs of a given target. </p> </td></tr><tr><td valign="top"> <p> <code class="literal">browse</code> </p> </td><td valign="top"> <p> browse the dependency graph in a web browser. Clicking a file focuses the view on that file, showing inputs and outputs. This feature requires a Python installation. By default port 8000 is used and a web browser will be opened. This can be changed as follows: </p> <pre class="screen">ninja -t browse --port=8000 --no-browser mytarget</pre> </td></tr><tr><td valign="top"> <p> <code class="literal">graph</code> </p> </td><td valign="top"> <p> output a file in the syntax used by <code class="literal">graphviz</code>, a automatic graph layout tool. Use it like: </p> <pre class="screen">ninja -t graph mytarget | dot -Tpng -ograph.png</pre> <p>In the Ninja source tree, <code class="literal">ninja graph.png</code> generates an image for Ninja itself. If no target is given generate a graph for all root targets.</p> </td></tr><tr><td valign="top"> <p> <code class="literal">targets</code> </p> </td><td valign="top"> <p> output a list of targets either by rule or by depth. If used like <code class="literal">ninja -t targets rule <span class="emphasis"><em>name</em></span></code> it prints the list of targets using the given rule to be built. If no rule is given, it prints the source files (the leaves of the graph). If used like <code class="literal">ninja -t targets depth <span class="emphasis"><em>digit</em></span></code> it prints the list of targets in a depth-first manner starting by the root targets (the ones with no outputs). Indentation is used to mark dependencies. If the depth is zero it prints all targets. If no arguments are provided <code class="literal">ninja -t targets depth 1</code> is assumed. In this mode targets may be listed several times. If used like this <code class="literal">ninja -t targets all</code> it prints all the targets available without indentation and it is faster than the <span class="emphasis"><em>depth</em></span> mode. </p> </td></tr><tr><td valign="top"> <p> <code class="literal">commands</code> </p> </td><td valign="top"> <p> given a list of targets, print a list of commands which, if executed in order, may be used to rebuild those targets, assuming that all output files are out of date. </p> </td></tr><tr><td valign="top"> <p> <code class="literal">clean</code> </p> </td><td valign="top"> <p> remove built files. By default it removes all built files except for those created by the generator. Adding the <code class="literal">-g</code> flag also removes built files created by the generator (see <a class="link" href="#ref_rule" title="Rule variables">the rule reference for the <code class="literal">generator</code> attribute</a>). Additional arguments are targets, which removes the given targets and recursively all files built for them. </p> <p>If used like <code class="literal">ninja -t clean -r <span class="emphasis"><em>rules</em></span></code> it removes all files built using the given rules.</p> <p>Files created but not referenced in the graph are not removed. This tool takes in account the <code class="literal">-v</code> and the <code class="literal">-n</code> options (note that <code class="literal">-n</code> implies <code class="literal">-v</code>).</p> </td></tr><tr><td valign="top"> <p> <code class="literal">compdb</code> </p> </td><td valign="top"> <p> given a list of rules, each of which is expected to be a C family language compiler rule whose first input is the name of the source file, prints on standard output a compilation database in the <a class="ulink" href="http://clang.llvm.org/docs/JSONCompilationDatabase.html" target="_top">JSON format</a> expected by the Clang tooling interface. <span class="emphasis"><em>Available since Ninja 1.2.</em></span> </p> </td></tr><tr><td valign="top"> <p> <code class="literal">deps</code> </p> </td><td valign="top"> <p> show all dependencies stored in the <code class="literal">.ninja_deps</code> file. When given a target, show just the targetâs dependencies. <span class="emphasis"><em>Available since Ninja 1.4.</em></span> </p> </td></tr><tr><td valign="top"> <p> <code class="literal">recompact</code> </p> </td><td valign="top"> <p> recompact the <code class="literal">.ninja_deps</code> file. <span class="emphasis"><em>Available since Ninja 1.4.</em></span> </p> </td></tr></tbody></table></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="_writing_your_own_ninja_files"></a>Writing your own Ninja files</h1></div></div></div><p>The remainder of this manual is only useful if you are constructing Ninja files yourself: for example, if youâre writing a meta-build system or supporting a new language.</p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_conceptual_overview"></a>Conceptual overview</h2></div></div></div><p>Ninja evaluates a graph of dependencies between files, and runs whichever commands are necessary to make your build target up to date as determined by file modification times. If you are familiar with Make, Ninja is very similar.</p><p>A build file (default name: <code class="literal">build.ninja</code>) provides a list of <span class="emphasis"><em>rules</em></span>âââshort names for longer commands, like how to run the compilerâââalong with a list of <span class="emphasis"><em>build</em></span> statements saying how to build files using the rulesâââwhich rule to apply to which inputs to produce which outputs.</p><p>Conceptually, <code class="literal">build</code> statements describe the dependency graph of your project, while <code class="literal">rule</code> statements describe how to generate the files along a given edge of the graph.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_syntax_example"></a>Syntax example</h2></div></div></div><p>Hereâs a basic <code class="literal">.ninja</code> file that demonstrates most of the syntax. It will be used as an example for the following sections.</p><pre class="screen">cflags = -Wall rule cc command = gcc $cflags -c $in -o $out build foo.o: cc foo.c</pre></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_variables"></a>Variables</h2></div></div></div><p>Despite the non-goal of being convenient to write by hand, to keep build files readable (debuggable), Ninja supports declaring shorter reusable names for strings. A declaration like the following</p><pre class="screen">cflags = -g</pre><p>can be used on the right side of an equals sign, dereferencing it with a dollar sign, like this:</p><pre class="screen">rule cc command = gcc $cflags -c $in -o $out</pre><p>Variables can also be referenced using curly braces like <code class="literal">${in}</code>.</p><p>Variables might better be called "bindings", in that a given variable cannot be changed, only shadowed. There is more on how shadowing works later in this document.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_rules"></a>Rules</h2></div></div></div><p>Rules declare a short name for a command line. They begin with a line consisting of the <code class="literal">rule</code> keyword and a name for the rule. Then follows an indented set of <code class="literal">variable = value</code> lines.</p><p>The basic example above declares a new rule named <code class="literal">cc</code>, along with the command to run. In the context of a rule, the <code class="literal">command</code> variable defines the command to run, <code class="literal">$in</code> expands to the list of input files (<code class="literal">foo.c</code>), and <code class="literal">$out</code> to the output files (<code class="literal">foo.o</code>) for the command. A full list of special variables is provided in <a class="link" href="#ref_rule" title="Rule variables">the reference</a>.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_build_statements"></a>Build statements</h2></div></div></div><p>Build statements declare a relationship between input and output files. They begin with the <code class="literal">build</code> keyword, and have the format <code class="literal">build <span class="emphasis"><em>outputs</em></span>: <span class="emphasis"><em>rulename</em></span> <span class="emphasis"><em>inputs</em></span></code>. Such a declaration says that all of the output files are derived from the input files. When the output files are missing or when the inputs change, Ninja will run the rule to regenerate the outputs.</p><p>The basic example above describes how to build <code class="literal">foo.o</code>, using the <code class="literal">cc</code> rule.</p><p>In the scope of a <code class="literal">build</code> block (including in the evaluation of its associated <code class="literal">rule</code>), the variable <code class="literal">$in</code> is the list of inputs and the variable <code class="literal">$out</code> is the list of outputs.</p><p>A build statement may be followed by an indented set of <code class="literal">key = value</code> pairs, much like a rule. These variables will shadow any variables when evaluating the variables in the command. For example:</p><pre class="screen">cflags = -Wall -Werror rule cc command = gcc $cflags -c $in -o $out # If left unspecified, builds get the outer $cflags. build foo.o: cc foo.c # But you can shadow variables like cflags for a particular build. build special.o: cc special.c cflags = -Wall # The variable was only shadowed for the scope of special.o; # Subsequent build lines get the outer (original) cflags. build bar.o: cc bar.c</pre><p>For more discussion of how scoping works, consult <a class="link" href="#ref_scope" title="Evaluation and scoping">the reference</a>.</p><p>If you need more complicated information passed from the build statement to the rule (for example, if the rule needs "the file extension of the first input"), pass that through as an extra variable, like how <code class="literal">cflags</code> is passed above.</p><p>If the top-level Ninja file is specified as an output of any build statement and it is out of date, Ninja will rebuild and reload it before building the targets requested by the user.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_generating_ninja_files_from_code"></a>Generating Ninja files from code</h2></div></div></div><p><code class="literal">misc/ninja_syntax.py</code> in the Ninja distribution is a tiny Python module to facilitate generating Ninja files. It allows you to make Python calls like <code class="literal">ninja.rule(name='foo', command='bar', depfile='$out.d')</code> and it will generate the appropriate syntax. Feel free to just inline it into your projectâs build system if itâs useful.</p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="_more_details"></a>More details</h1></div></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_the_literal_phony_literal_rule"></a>The <code class="literal">phony</code> rule</h2></div></div></div><p>The special rule name <code class="literal">phony</code> can be used to create aliases for other targets. For example:</p><pre class="screen">build foo: phony some/file/in/a/faraway/subdir/foo</pre><p>This makes <code class="literal">ninja foo</code> build the longer path. Semantically, the <code class="literal">phony</code> rule is equivalent to a plain rule where the <code class="literal">command</code> does nothing, but phony rules are handled specially in that they arenât printed when run, logged (see below), nor do they contribute to the command count printed as part of the build process.</p><p><code class="literal">phony</code> can also be used to create dummy targets for files which may not exist at build time. If a phony build statement is written without any dependencies, the target will be considered out of date if it does not exist. Without a phony build statement, Ninja will report an error if the file does not exist and is required by the build.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_default_target_statements"></a>Default target statements</h2></div></div></div><p>By default, if no targets are specified on the command line, Ninja will build every output that is not named as an input elsewhere. You can override this behavior using a default target statement. A default target statement causes Ninja to build only a given subset of output files if none are specified on the command line.</p><p>Default target statements begin with the <code class="literal">default</code> keyword, and have the format <code class="literal">default <span class="emphasis"><em>targets</em></span></code>. A default target statement must appear after the build statement that declares the target as an output file. They are cumulative, so multiple statements may be used to extend the list of default targets. For example:</p><pre class="screen">default foo bar default baz</pre><p>This causes Ninja to build the <code class="literal">foo</code>, <code class="literal">bar</code> and <code class="literal">baz</code> targets by default.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_log"></a>The Ninja log</h2></div></div></div><p>For each built file, Ninja keeps a log of the command used to build it. Using this log Ninja can know when an existing output was built with a different command line than the build files specify (i.e., the command line changed) and knows to rebuild the file.</p><p>The log file is kept in the build root in a file called <code class="literal">.ninja_log</code>. If you provide a variable named <code class="literal">builddir</code> in the outermost scope, <code class="literal">.ninja_log</code> will be kept in that directory instead.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_versioning"></a>Version compatibility</h2></div></div></div><p><span class="emphasis"><em>Available since Ninja 1.2.</em></span></p><p>Ninja version labels follow the standard major.minor.patch format, where the major version is increased on backwards-incompatible syntax/behavioral changes and the minor version is increased on new behaviors. Your <code class="literal">build.ninja</code> may declare a variable named <code class="literal">ninja_required_version</code> that asserts the minimum Ninja version required to use the generated file. For example,</p><pre class="screen">ninja_required_version = 1.1</pre><p>declares that the build file relies on some feature that was introduced in Ninja 1.1 (perhaps the <code class="literal">pool</code> syntax), and that Ninja 1.1 or greater must be used to build. Unlike other Ninja variables, this version requirement is checked immediately when the variable is encountered in parsing, so itâs best to put it at the top of the build file.</p><p>Ninja always warns if the major versions of Ninja and the <code class="literal">ninja_required_version</code> donât match; a major version change hasnât come up yet so itâs difficult to predict what behavior might be required.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_headers"></a>C/C++ header dependencies</h2></div></div></div><p>To get C/C++ header dependencies (or any other build dependency that works in a similar way) correct Ninja has some extra functionality.</p><p>The problem with headers is that the full list of files that a given source file depends on can only be discovered by the compiler: different preprocessor defines and include paths cause different files to be used. Some compilers can emit this information while building, and Ninja can use that to get its dependencies perfect.</p><p>Consider: if the file has never been compiled, it must be built anyway, generating the header dependencies as a side effect. If any file is later modified (even in a way that changes which headers it depends on) the modification will cause a rebuild as well, keeping the dependencies up to date.</p><p>When loading these special dependencies, Ninja implicitly adds extra build edges such that it is not an error if the listed dependency is missing. This allows you to delete a header file and rebuild without the build aborting due to a missing input.</p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="_depfile"></a>depfile</h3></div></div></div><p><code class="literal">gcc</code> (and other compilers like <code class="literal">clang</code>) support emitting dependency information in the syntax of a Makefile. (Any command that can write dependencies in this form can be used, not just <code class="literal">gcc</code>.)</p><p>To bring this information into Ninja requires cooperation. On the Ninja side, the <code class="literal">depfile</code> attribute on the <code class="literal">build</code> must point to a path where this data is written. (Ninja only supports the limited subset of the Makefile syntax emitted by compilers.) Then the command must know to write dependencies into the <code class="literal">depfile</code> path. Use it like in the following example:</p><pre class="screen">rule cc depfile = $out.d command = gcc -MMD -MF $out.d [other gcc flags here]</pre><p>The <code class="literal">-MMD</code> flag to <code class="literal">gcc</code> tells it to output header dependencies, and the <code class="literal">-MF</code> flag tells it where to write them.</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="_deps"></a>deps</h3></div></div></div><p><span class="emphasis"><em>(Available since Ninja 1.3.)</em></span></p><p>It turns out that for large projects (and particularly on Windows, where the file system is slow) loading these dependency files on startup is slow.</p><p>Ninja 1.3 can instead process dependencies just after theyâre generated and save a compacted form of the same information in a Ninja-internal database.</p><p>Ninja supports this processing in two forms.</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"> <code class="literal">deps = gcc</code> specifies that the tool outputs <code class="literal">gcc</code>-style dependencies in the form of Makefiles. Adding this to the above example will cause Ninja to process the <code class="literal">depfile</code> immediately after the compilation finishes, then delete the <code class="literal">.d</code> file (which is only used as a temporary). </li><li class="listitem"><p class="simpara"> <code class="literal">deps = msvc</code> specifies that the tool outputs header dependencies in the form produced by Visual Studioâs compilerâs <a class="ulink" href="http://msdn.microsoft.com/en-us/library/hdkef6tk(v=vs.90).aspx" target="_top"><code class="literal">/showIncludes</code> flag</a>. Briefly, this means the tool outputs specially-formatted lines to its stdout. Ninja then filters these lines from the displayed output. No <code class="literal">depfile</code> attribute is necessary, but the localized string in front of the the header file path. For instance `msvc_deps_prefix = Note: including file: ` for a English Visual Studio (the default). Should be globally defined. </p><pre class="screen">msvc_deps_prefix = Note: including file: rule cc deps = msvc command = cl /showIncludes -c $in /Fo$out</pre></li></ol></div><p>If the include directory directives are using absolute paths, your depfile may result in a mixture of relative and absolute paths. Paths used by other build rules need to match exactly. Therefore, it is recommended to use relative paths in these cases.</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_pool"></a>Pools</h2></div></div></div><p><span class="emphasis"><em>Available since Ninja 1.1.</em></span></p><p>Pools allow you to allocate one or more rules or edges a finite number of concurrent jobs which is more tightly restricted than the default parallelism.</p><p>This can be useful, for example, to restrict a particular expensive rule (like link steps for huge executables), or to restrict particular build statements which you know perform poorly when run concurrently.</p><p>Each pool has a <code class="literal">depth</code> variable which is specified in the build file. The pool is then referred to with the <code class="literal">pool</code> variable on either a rule or a build statement.</p><p>No matter what pools you specify, ninja will never run more concurrent jobs than the default parallelism, or the number of jobs specified on the command line (with <code class="literal">-j</code>).</p><pre class="screen"># No more than 4 links at a time. pool link_pool depth = 4 # No more than 1 heavy object at a time. pool heavy_object_pool depth = 1 rule link ... pool = link_pool rule cc ... # The link_pool is used here. Only 4 links will run concurrently. build foo.exe: link input.obj # A build statement can be exempted from its rule's pool by setting an # empty pool. This effectively puts the build statement back into the default # pool, which has infinite depth. build other.exe: link input.obj pool = # A build statement can specify a pool directly. # Only one of these builds will run at a time. build heavy_object1.obj: cc heavy_obj1.cc pool = heavy_object_pool build heavy_object2.obj: cc heavy_obj2.cc pool = heavy_object_pool</pre><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="_the_literal_console_literal_pool"></a>The <code class="literal">console</code> pool</h3></div></div></div><p><span class="emphasis"><em>Available since Ninja 1.5.</em></span></p><p>There exists a pre-defined pool named <code class="literal">console</code> with a depth of 1. It has the special property that any task in the pool has direct access to the standard input, output and error streams provided to Ninja, which are normally connected to the userâs console (hence the name) but could be redirected. This can be useful for interactive tasks or long-running tasks which produce status updates on the console (such as test suites).</p><p>While a task in the <code class="literal">console</code> pool is running, Ninjaâs regular output (such as progress status and output from concurrent tasks) is buffered until it completes.</p></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="_ninja_file_reference"></a>Ninja file reference</h1></div></div></div><p>A file is a series of declarations. A declaration can be one of:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"> A rule declaration, which begins with <code class="literal">rule <span class="emphasis"><em>rulename</em></span></code>, and then has a series of indented lines defining variables. </li><li class="listitem"><p class="simpara"> A build edge, which looks like <code class="literal">build <span class="emphasis"><em>output1</em></span> <span class="emphasis"><em>output2</em></span>: <span class="emphasis"><em>rulename</em></span> <span class="emphasis"><em>input1</em></span> <span class="emphasis"><em>input2</em></span></code>. Implicit dependencies may be tacked on the end with <code class="literal">| <span class="emphasis"><em>dependency1</em></span> <span class="emphasis"><em>dependency2</em></span></code>. Order-only dependencies may be tacked on the end with <code class="literal">|| <span class="emphasis"><em>dependency1</em></span> <span class="emphasis"><em>dependency2</em></span></code>. (See <a class="link" href="#ref_dependencies" title="Build dependencies">the reference on dependency types</a>.) </p><p class="simpara">Implicit outputs <span class="emphasis"><em>(available since Ninja 1.7)</em></span> may be added before the <code class="literal">:</code> with <code class="literal">| <span class="emphasis"><em>output1</em></span> <span class="emphasis"><em>output2</em></span></code> and do not appear in <code class="literal">$out</code>. (See <a class="link" href="#ref_outputs" title="Build outputs">the reference on output types</a>.)</p></li><li class="listitem"> Variable declarations, which look like <code class="literal"><span class="emphasis"><em>variable</em></span> = <span class="emphasis"><em>value</em></span></code>. </li><li class="listitem"> Default target statements, which look like <code class="literal">default <span class="emphasis"><em>target1</em></span> <span class="emphasis"><em>target2</em></span></code>. </li><li class="listitem"> References to more files, which look like <code class="literal">subninja <span class="emphasis"><em>path</em></span></code> or <code class="literal">include <span class="emphasis"><em>path</em></span></code>. The difference between these is explained below <a class="link" href="#ref_scope" title="Evaluation and scoping">in the discussion about scoping</a>. </li><li class="listitem"> A pool declaration, which looks like <code class="literal">pool <span class="emphasis"><em>poolname</em></span></code>. Pools are explained <a class="link" href="#ref_pool" title="Pools">in the section on pools</a>. </li></ol></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_lexical_syntax"></a>Lexical syntax</h2></div></div></div><p>Ninja is mostly encoding agnostic, as long as the bytes Ninja cares about (like slashes in paths) are ASCII. This means e.g. UTF-8 or ISO-8859-1 input files ought to work.</p><p>Comments begin with <code class="literal">#</code> and extend to the end of the line.</p><p>Newlines are significant. Statements like <code class="literal">build foo bar</code> are a set of space-separated tokens that end at the newline. Newlines and spaces within a token must be escaped.</p><p>There is only one escape character, <code class="literal">$</code>, and it has the following behaviors:</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal">$</code> followed by a newline </span></dt><dd> escape the newline (continue the current line across a line break). </dd><dt><span class="term"> <code class="literal">$</code> followed by text </span></dt><dd> a variable reference. </dd><dt><span class="term"> <code class="literal">${varname}</code> </span></dt><dd> alternate syntax for <code class="literal">$varname</code>. </dd><dt><span class="term"> <code class="literal">$</code> followed by space </span></dt><dd> a space. (This is only necessary in lists of paths, where a space would otherwise separate filenames. See below.) </dd><dt><span class="term"> <code class="literal">$:</code> </span></dt><dd> a colon. (This is only necessary in <code class="literal">build</code> lines, where a colon would otherwise terminate the list of outputs.) </dd><dt><span class="term"> <code class="literal">$$</code> </span></dt><dd> a literal <code class="literal">$</code>. </dd></dl></div><p>A <code class="literal">build</code> or <code class="literal">default</code> statement is first parsed as a space-separated list of filenames and then each name is expanded. This means that spaces within a variable will result in spaces in the expanded filename.</p><pre class="screen">spaced = foo bar build $spaced/baz other$ file: ... # The above build line has two outputs: "foo bar/baz" and "other file".</pre><p>In a <code class="literal">name = value</code> statement, whitespace at the beginning of a value is always stripped. Whitespace at the beginning of a line after a line continuation is also stripped.</p><pre class="screen">two_words_with_one_space = foo $ bar one_word_with_no_space = foo$ bar</pre><p>Other whitespace is only significant if itâs at the beginning of a line. If a line is indented more than the previous one, itâs considered part of its parentâs scope; if it is indented less than the previous one, it closes the previous scope.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_toplevel"></a>Top-level variables</h2></div></div></div><p>Two variables are significant when declared in the outermost file scope.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal">builddir</code> </span></dt><dd> a directory for some Ninja output files. See <a class="link" href="#ref_log" title="The Ninja log">the discussion of the build log</a>. (You can also store other build output in this directory.) </dd><dt><span class="term"> <code class="literal">ninja_required_version</code> </span></dt><dd> the minimum version of Ninja required to process the build correctly. See <a class="link" href="#ref_versioning" title="Version compatibility">the discussion of versioning</a>. </dd></dl></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_rule"></a>Rule variables</h2></div></div></div><p>A <code class="literal">rule</code> block contains a list of <code class="literal">key = value</code> declarations that affect the processing of the rule. Here is a full list of special keys.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal">command</code> (<span class="emphasis"><em>required</em></span>) </span></dt><dd> the command line to run. Each <code class="literal">rule</code> may have only one <code class="literal">command</code> declaration. See <a class="link" href="#ref_rule_command" title="Interpretation of the command variable">the next section</a> for more details on quoting and executing multiple commands. </dd><dt><span class="term"> <code class="literal">depfile</code> </span></dt><dd> path to an optional <code class="literal">Makefile</code> that contains extra <span class="emphasis"><em>implicit dependencies</em></span> (see <a class="link" href="#ref_dependencies" title="Build dependencies">the reference on dependency types</a>). This is explicitly to support C/C++ header dependencies; see <a class="link" href="#ref_headers" title="C/C++ header dependencies">the full discussion</a>. </dd><dt><span class="term"> <code class="literal">deps</code> </span></dt><dd> <span class="emphasis"><em>(Available since Ninja 1.3.)</em></span> if present, must be one of <code class="literal">gcc</code> or <code class="literal">msvc</code> to specify special dependency processing. See <a class="link" href="#ref_headers" title="C/C++ header dependencies">the full discussion</a>. The generated database is stored as <code class="literal">.ninja_deps</code> in the <code class="literal">builddir</code>, see <a class="link" href="#ref_toplevel" title="Top-level variables">the discussion of <code class="literal">builddir</code></a>. </dd><dt><span class="term"> <code class="literal">msvc_deps_prefix</code> </span></dt><dd> <span class="emphasis"><em>(Available since Ninja 1.5.)</em></span> defines the string which should be stripped from msvcâs /showIncludes output. Only needed when <code class="literal">deps = msvc</code> and no English Visual Studio version is used. </dd><dt><span class="term"> <code class="literal">description</code> </span></dt><dd> a short description of the command, used to pretty-print the command as itâs running. The <code class="literal">-v</code> flag controls whether to print the full command or its description; if a command fails, the full command line will always be printed before the commandâs output. </dd><dt><span class="term"> <code class="literal">generator</code> </span></dt><dd> if present, specifies that this rule is used to re-invoke the generator program. Files built using <code class="literal">generator</code> rules are treated specially in two ways: firstly, they will not be rebuilt if the command line changes; and secondly, they are not cleaned by default. </dd><dt><span class="term"> <code class="literal">in</code> </span></dt><dd> the space-separated list of files provided as inputs to the build line referencing this <code class="literal">rule</code>, shell-quoted if it appears in commands. (<code class="literal">$in</code> is provided solely for convenience; if you need some subset or variant of this list of files, just construct a new variable with that list and use that instead.) </dd><dt><span class="term"> <code class="literal">in_newline</code> </span></dt><dd> the same as <code class="literal">$in</code> except that multiple inputs are separated by newlines rather than spaces. (For use with <code class="literal">$rspfile_content</code>; this works around a bug in the MSVC linker where it uses a fixed-size buffer for processing input.) </dd><dt><span class="term"> <code class="literal">out</code> </span></dt><dd> the space-separated list of files provided as outputs to the build line referencing this <code class="literal">rule</code>, shell-quoted if it appears in commands. </dd><dt><span class="term"> <code class="literal">restat</code> </span></dt><dd> if present, causes Ninja to re-stat the commandâs outputs after execution of the command. Each output whose modification time the command did not change will be treated as though it had never needed to be built. This may cause the outputâs reverse dependencies to be removed from the list of pending build actions. </dd><dt><span class="term"> <code class="literal">rspfile</code>, <code class="literal">rspfile_content</code> </span></dt><dd><p class="simpara"> if present (both), Ninja will use a response file for the given command, i.e. write the selected string (<code class="literal">rspfile_content</code>) to the given file (<code class="literal">rspfile</code>) before calling the command and delete the file after successful execution of the command. </p><p class="simpara">This is particularly useful on Windows OS, where the maximal length of a command line is limited and response files must be used instead.</p><p class="simpara">Use it like in the following example:</p><pre class="screen">rule link command = link.exe /OUT$out [usual link flags here] @$out.rsp rspfile = $out.rsp rspfile_content = $in build myapp.exe: link a.obj b.obj [possibly many other .obj files]</pre></dd></dl></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="ref_rule_command"></a>Interpretation of the <code class="literal">command</code> variable</h3></div></div></div><p>Fundamentally, command lines behave differently on Unixes and Windows.</p><p>On Unixes, commands are arrays of arguments. The Ninja <code class="literal">command</code> variable is passed directly to <code class="literal">sh -c</code>, which is then responsible for interpreting that string into an argv array. Therefore the quoting rules are those of the shell, and you can use all the normal shell operators, like <code class="literal">&&</code> to chain multiple commands, or <code class="literal">VAR=value cmd</code> to set environment variables.</p><p>On Windows, commands are strings, so Ninja passes the <code class="literal">command</code> string directly to <code class="literal">CreateProcess</code>. (In the common case of simply executing a compiler this means there is less overhead.) Consequently the quoting rules are deterimined by the called program, which on Windows are usually provided by the C library. If you need shell interpretation of the command (such as the use of <code class="literal">&&</code> to chain multiple commands), make the command execute the Windows shell by prefixing the command with <code class="literal">cmd /c</code>.</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_outputs"></a>Build outputs</h2></div></div></div><p>There are two types of build outputs which are subtly different.</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p class="simpara"> <span class="emphasis"><em>Explicit outputs</em></span>, as listed in a build line. These are available as the <code class="literal">$out</code> variable in the rule. </p><p class="simpara">This is the standard form of output to be used for e.g. the object file of a compile command.</p></li><li class="listitem"><p class="simpara"> <span class="emphasis"><em>Implicit outputs</em></span>, as listed in a build line with the syntax <code class="literal">| <span class="emphasis"><em>out1</em></span> <span class="emphasis"><em>out2</em></span></code> + before the <code class="literal">:</code> of a build line <span class="emphasis"><em>(available since Ninja 1.7)</em></span>. The semantics are identical to explicit outputs, the only difference is that implicit outputs donât show up in the <code class="literal">$out</code> variable. </p><p class="simpara">This is for expressing outputs that donât show up on the command line of the command.</p></li></ol></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_dependencies"></a>Build dependencies</h2></div></div></div><p>There are three types of build dependencies which are subtly different.</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p class="simpara"> <span class="emphasis"><em>Explicit dependencies</em></span>, as listed in a build line. These are available as the <code class="literal">$in</code> variable in the rule. Changes in these files cause the output to be rebuilt; if these file are missing and Ninja doesnât know how to build them, the build is aborted. </p><p class="simpara">This is the standard form of dependency to be used e.g. for the source file of a compile command.</p></li><li class="listitem"><p class="simpara"> <span class="emphasis"><em>Implicit dependencies</em></span>, either as picked up from a <code class="literal">depfile</code> attribute on a rule or from the syntax <code class="literal">| <span class="emphasis"><em>dep1</em></span> <span class="emphasis"><em>dep2</em></span></code> on the end of a build line. The semantics are identical to explicit dependencies, the only difference is that implicit dependencies donât show up in the <code class="literal">$in</code> variable. </p><p class="simpara">This is for expressing dependencies that donât show up on the command line of the command; for example, for a rule that runs a script, the script itself should be an implicit dependency, as changes to the script should cause the output to rebuild.</p><p class="simpara">Note that dependencies as loaded through depfiles have slightly different semantics, as described in the <a class="link" href="#ref_rule" title="Rule variables">rule reference</a>.</p></li><li class="listitem"><p class="simpara"> <span class="emphasis"><em>Order-only dependencies</em></span>, expressed with the syntax <code class="literal">|| <span class="emphasis"><em>dep1</em></span> <span class="emphasis"><em>dep2</em></span></code> on the end of a build line. When these are out of date, the output is not rebuilt until they are built, but changes in order-only dependencies alone do not cause the output to be rebuilt. </p><p class="simpara">Order-only dependencies can be useful for bootstrapping dependencies that are only discovered during build time: for example, to generate a header file before starting a subsequent compilation step. (Once the header is used in compilation, a generated dependency file will then express the implicit dependency.)</p></li></ol></div><p>File paths are compared as is, which means that an absolute path and a relative path, pointing to the same file, are considered different by Ninja.</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="_variable_expansion"></a>Variable expansion</h2></div></div></div><p>Variables are expanded in paths (in a <code class="literal">build</code> or <code class="literal">default</code> statement) and on the right side of a <code class="literal">name = value</code> statement.</p><p>When a <code class="literal">name = value</code> statement is evaluated, its right-hand side is expanded immediately (according to the below scoping rules), and from then on <code class="literal">$name</code> expands to the static string as the result of the expansion. It is never the case that youâll need to "double-escape" a value to prevent it from getting expanded twice.</p><p>All variables are expanded immediately as theyâre encountered in parsing, with one important exception: variables in <code class="literal">rule</code> blocks are expanded when the rule is <span class="emphasis"><em>used</em></span>, not when it is declared. In the following example, the <code class="literal">demo</code> rule prints "this is a demo of bar".</p><pre class="screen">rule demo command = echo "this is a demo of $foo" build out: demo foo = bar</pre></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ref_scope"></a>Evaluation and scoping</h2></div></div></div><p>Top-level variable declarations are scoped to the file they occur in.</p><p>Rule declarations are also scoped to the file they occur in. <span class="emphasis"><em>(Available since Ninja 1.6)</em></span></p><p>The <code class="literal">subninja</code> keyword, used to include another <code class="literal">.ninja</code> file, introduces a new scope. The included <code class="literal">subninja</code> file may use the variables and rules from the parent file, and shadow their values for the fileâs scope, but it wonât affect values of the variables in the parent.</p><p>To include another <code class="literal">.ninja</code> file in the current scope, much like a C <code class="literal">#include</code> statement, use <code class="literal">include</code> instead of <code class="literal">subninja</code>.</p><p>Variable declarations indented in a <code class="literal">build</code> block are scoped to the <code class="literal">build</code> block. The full lookup order for a variable expanded in a <code class="literal">build</code> block (or the <code class="literal">rule</code> is uses) is:</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"> Special built-in variables (<code class="literal">$in</code>, <code class="literal">$out</code>). </li><li class="listitem"> Build-level variables from the <code class="literal">build</code> block. </li><li class="listitem"> Rule-level variables from the <code class="literal">rule</code> block (i.e. <code class="literal">$command</code>). (Note from the above discussion on expansion that these are expanded "late", and may make use of in-scope bindings like <code class="literal">$in</code>.) </li><li class="listitem"> File-level variables from the file that the <code class="literal">build</code> line was in. </li><li class="listitem"> Variables from the file that included that file using the <code class="literal">subninja</code> keyword. </li></ol></div></div></div></div></body></html>