OXIESEC PANEL
- Current Dir:
/
/
usr
/
local
/
lib
/
python3.6
/
dist-packages
/
numpy
/
ma
/
tests
Server IP: 139.59.38.164
Upload:
Create Dir:
Name
Size
Modified
Perms
📁
..
-
10/28/2024 05:59:26 AM
rwxr-xr-x
📄
__init__.py
0 bytes
10/28/2024 05:59:24 AM
rw-r--r--
📁
__pycache__
-
10/28/2024 05:59:26 AM
rwxr-xr-x
📄
test_core.py
194.5 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_deprecations.py
2.21 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_extras.py
65.37 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_mrecords.py
19.4 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_old_ma.py
31.53 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_regression.py
3.01 KB
10/28/2024 05:59:24 AM
rw-r--r--
📄
test_subclassing.py
12.56 KB
10/28/2024 05:59:24 AM
rw-r--r--
Editing: test_deprecations.py
Close
"""Test deprecation and future warnings. """ import numpy as np from numpy.testing import assert_warns from numpy.ma.testutils import assert_equal from numpy.ma.core import MaskedArrayFutureWarning class TestArgsort: """ gh-8701 """ def _test_base(self, argsort, cls): arr_0d = np.array(1).view(cls) argsort(arr_0d) arr_1d = np.array([1, 2, 3]).view(cls) argsort(arr_1d) # argsort has a bad default for >1d arrays arr_2d = np.array([[1, 2], [3, 4]]).view(cls) result = assert_warns( np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d) assert_equal(result, argsort(arr_2d, axis=None)) # should be no warnings for explicitly specifying it argsort(arr_2d, axis=None) argsort(arr_2d, axis=-1) def test_function_ndarray(self): return self._test_base(np.ma.argsort, np.ndarray) def test_function_maskedarray(self): return self._test_base(np.ma.argsort, np.ma.MaskedArray) def test_method(self): return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray) class TestMinimumMaximum: def test_minimum(self): assert_warns(DeprecationWarning, np.ma.minimum, np.ma.array([1, 2])) def test_maximum(self): assert_warns(DeprecationWarning, np.ma.maximum, np.ma.array([1, 2])) def test_axis_default(self): # NumPy 1.13, 2017-05-06 data1d = np.ma.arange(6) data2d = data1d.reshape(2, 3) ma_min = np.ma.minimum.reduce ma_max = np.ma.maximum.reduce # check that the default axis is still None, but warns on 2d arrays result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d) assert_equal(result, ma_max(data2d, axis=None)) result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d) assert_equal(result, ma_min(data2d, axis=None)) # no warnings on 1d, as both new and old defaults are equivalent result = ma_min(data1d) assert_equal(result, ma_min(data1d, axis=None)) assert_equal(result, ma_min(data1d, axis=0)) result = ma_max(data1d) assert_equal(result, ma_max(data1d, axis=None)) assert_equal(result, ma_max(data1d, axis=0))